Need help with kalman-filter?

Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

191 Stars 60 Forks 4 Commits 3 Opened issues

Kalman Filter implementation in Python using Numpy only in 30 lines.

Readme

Implementation of Kalman filter in 30 lines using Numpy. All notations are same as in Kalman Filter Wikipedia Page.

It is a generic implementation of Kalman Filter, should work for any system, provided system dynamics matrices are set up properly. Included example is the prediction of position, velocity and acceleration based on position measurements. Synthetic data is generated for the purpose of illustration.

Running:

python kalman-filter.py

import numpy as npclass KalmanFilter(object): def

init(self, F = None, B = None, H = None, Q = None, R = None, P = None, x0 = None):`if(F is None or H is None): raise ValueError("Set proper system dynamics.") self.n = F.shape[1] self.m = H.shape[1] self.F = F self.H = H self.B = 0 if B is None else B self.Q = np.eye(self.n) if Q is None else Q self.R = np.eye(self.n) if R is None else R self.P = np.eye(self.n) if P is None else P self.x = np.zeros((self.n, 1)) if x0 is None else x0 def predict(self, u = 0): self.x = np.dot(self.F, self.x) + np.dot(self.B, u) self.P = np.dot(np.dot(self.F, self.P), self.F.T) + self.Q return self.x def update(self, z): y = z - np.dot(self.H, self.x) S = self.R + np.dot(self.H, np.dot(self.P, self.H.T)) K = np.dot(np.dot(self.P, self.H.T), np.linalg.inv(S)) self.x = self.x + np.dot(K, y) I = np.eye(self.n) self.P = np.dot(np.dot(I - np.dot(K, self.H), self.P), (I - np.dot(K, self.H)).T) + np.dot(np.dot(K, self.R), K.T)`

def example(): dt = 1.0/60 F = np.array([[1, dt, 0], [0, 1, dt], [0, 0, 1]]) H = np.array([1, 0, 0]).reshape(1, 3) Q = np.array([[0.05, 0.05, 0.0], [0.05, 0.05, 0.0], [0.0, 0.0, 0.0]]) R = np.array([0.5]).reshape(1, 1)

`x = np.linspace(-10, 10, 100) measurements = - (x**2 + 2*x - 2) + np.random.normal(0, 2, 100) kf = KalmanFilter(F = F, H = H, Q = Q, R = R) predictions = [] for z in measurements: predictions.append(np.dot(H, kf.predict())[0]) kf.update(z) import matplotlib.pyplot as plt plt.plot(range(len(measurements)), measurements, label = 'Measurements') plt.plot(range(len(predictions)), np.array(predictions), label = 'Kalman Filter Prediction') plt.legend() plt.show()`

if

name== 'main': example()