Need help with Fast-AutoAug-Torch?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

148 Stars 12 Forks MIT License 17 Commits 1 Opened issues

Services available


Need anything else?

Contributors list

# 7,500
14 commits


Search for Fast AutoAugment using AutoTorch. AutoAugment and RandAugment are also implemented for comparison.

This example and Search for RegNet will be used in the tutorial on From HPO to NAS: Automated Deep Learning at CVPR 2020.

| model | augment| epoch | Acc | weights | |-------|--------|-------|-----|---------| |ResNet-50| baseline | 120 | 76.48 | |ResNet-50| AA | 120 | 76.66 | |ResNet-50| Fast AA | 120| 76.88 | |ResNet-50| Rand AA | 120 | 76.79 | |ResNet-50| baseline | 270| 77.17 | |ResNet-50| AA | 270 | 77.78 | link | |ResNet-50| Fast AA | 270| 77.73 | link | |ResNet-50| Rand AA | 270| 77.97 | link |


AA: AutoAugment,
Fast AA: Fast AutoAugment,
Rand AA: RandAugment,

Training HP setting:

learning rate: 0.2,
batch size: 512,
weight decay: 1e-4,

Fast AA setting (using random search):

K=8, T=1, N=5,
resulting 40 subpolicies in total.

RandAug setting (after grid search):

n=2, m=12,


Install dependencies

  • PyTorch, please follow the instructions.

  • Install AutoTorch and PyTorch-Encoding toolkits:

pip install autotorch --pre
pip install torch-encoding --pre
  • Install Apex (optional):
git clone
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Prepare dataset

# assuming you have downloaded the ImageNet dataset in the current folder
python --download-dir ./

Fast AutoAugment Training

Search policy

If you want to skip this step, you can download the searched policy here.

python --reduced-size 60000 --epochs 120 --nfolds 8 --num-trials 200  --save-policy

An example learned policy

Train with searched policy

python --dataset imagenet --model resnet50 --lr-scheduler cos --epochs 270 --checkname resnet50_fast_aa --lr 0.025 --batch-size 64 --auto-policy

Other Methods

Training with AutoAugment policy

For AutoAugment we only enable training with searched policy from the original paper.

# download the policy
# start the training
python --dataset imagenet --model resnet50 --lr-scheduler cos --epochs 270 --checkname resnet50_fast_aa --lr 0.025 --batch-size 64 --auto-policy

Training with RandomAugment

python --dataset imagenet --model resnet50 --lr-scheduler cos --epochs 270 --checkname resnet50_rand_aug --lr 0.025 --batch-size 64 --rand-aug

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.