Need help with Chinese-RC-Datasets?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

ymcui
172 Stars 24 Forks Creative Commons Attribution Share Alike 4.0 International 27 Commits 0 Opened issues

Description

Collections of Chinese reading comprehension datasets

Services available

!
?

Need anything else?

Contributors list

# 2,964
Python
Tensorf...
pytorch
roberta
27 commits

Chinese Machine Reading Comprehension Datasets

Note that, this repository will be updated irregularly.

If you find this repository helpful, please press the star button. Moreover, if you would like to use or repost the content in this repository, please indicate the orignal author and source link.

Content

| Section | Description | |-|-| | Chinese Reading Comprehension Datasets | Describe public Chinese RC datasets | | State-of-the-art Systems | State-of-the-art systems and results | | Chinese Reading Comprehension Evaluations and Competitions | Introductions to Chinese RC competitions |

Chinese Reading Comprehension Datasets

Here I list several Chinese reading comprehension datasets that are PUBLICLY available (with appropriate technical report or paper). If I missed something, feel free to inform me. Unless indicated, the datasets are in simplified Chinese.

| Dataset | Genre | Query Type | Answer Type | Document # | Query # | Download | | :------ | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: | | People Daily & Children's Fairy Tale [1] | news & tale | Cloze | word | 28K | 100K | link | | WebQA [2] | Web | User log | entity | - | 42K | link | | CMRC 2017 [3] | news | Cloze & Query | word | - | 364K | link | | DuReader [4] | Web | User log | free form | 1M | 200K | link | | CMRC 2018 [5] | Wiki | Query | Span | - | 18K | link | | DRCD [6](tranditional Chinese) | Wiki | Query | Span | - | 34K | link | | C^3 [7] | mixed | Query | choice | 14K | 24K | link | | CMRC 2019 [8] | Story | cloze | Sentence | 1K | 100K | link | | ChID [9] | varies | cloze | idiom | 580K | 729K | link |

1 Consensus Attention-based Neural Networks for Chinese Reading Comprehension. In COLING 2016. https://aclanthology.info/papers/C16-1167/c16-1167

2 Dataset and Neural Recurrent Sequence Labeling Model for Open-Domain Factoid Question Answering. In arXiv. https://arxiv.org/abs/1607.06275

3 Dataset for the First Evaluation on Chinese Machine Reading Comprehension. In LREC 2018. http://www.lrec-conf.org/proceedings/lrec2018/summaries/32.html

4 DuReader: a Chinese Machine Reading Comprehension Dataset from Real-world Applications. In ACL 2018 MRQA Workshop. https://aclanthology.info/papers/W18-2605/w18-2605

5 A Span-Extraction Dataset for Chinese Machine Reading Comprehension. In arXiv. https://arxiv.org/abs/1810.07366

6 DRCD: a Chinese Machine Reading Comprehension Dataset. In arXiv. https://arxiv.org/abs/1806.00920

7 Probing Prior Knowledge Needed in Challenging Chinese Machine Reading Comprehension. https://arxiv.org/abs/1904.09679

8 https://github.com/ymcui/cmrc2019

9 ChID: A Large-scale Chinese IDiom Dataset for Cloze Test. https://aclweb.org/anthology/papers/P/P19/P19-1075/

State-of-the-art Systems

Here I list several state-of-the-art systems (published / unpublished) for these datasets. There is a big chance that I missed something. So feel free to inform me new entries on

Issue
tab.

People Daily & Children's Fairy Tale

| System | PD-DEV | PD-TEST | CFT-TEST-AUTO | CFT-TEST-HUMAN | Note | | :------ | :-----: | :-----: | :-----: | :-----: | :-----: | | SAW Reader (Zhang et al., 2018) | 72.8 | 75.1 | - | 43.8 | - | | CAW Reader (Zhang et al., 2018)| 69.4 | 70.5 | - | 39.7 | - | | CAS Reader (Cui et al., 2016) | 65.2 | 68.1 | 41.3 | 35.0 | - | | AS Reader (Cui et al., 2016) | 64.1 | 67.2 | 40.9 | 33.1 | - |

CMRC 2017

Leaderboard: https://hfl-rc.github.io/cmrc2017/leaderboard/

Cloze Track

| System | DEV | TEST | Note | | :------ | :-----: | :-----: | :-----: | | 6ESTATES PTE LTD (ensemble) | 81.85 | 81.90 | - | | SJTU BCMI-NLP (ensemble) | 78.35 | 80.67 | - | | YunSiChuangZhi (ensemble) | 79.20 | 80.27 | - | | SAW Reader (Zhang et al., 2018) | 78.95 | 78.80 | - | | CAW Reader (Zhang et al., 2018) | 77.95 | 78.50 | - | | Word + Char + BPE-FRQ (Zhang et al., 2018) | 79.05 | 78.83 | - |

User Query Track

| System | DEV | TEST | Note | | :------ | :-----: | :-----: | :-----: | | ECNU (ensemble) | 90.45 | 69.53 | - | | SXU-3 (single model) | 47.80 | 49.07 | - | | ZZU (single model) | 31.10 | 32.53 | - |

DuReader

Leaderboard: http://ai.baidu.com/broad/leaderboard?dataset=dureader

| System | ROUGE-L | BLEU-4 | Note | | :------ | :-----: | :-----: | :-----: | | AliReader | 63.48 | 61.54 | - | | NI-Reader (ensemble) | 63.38 | 59.23 | - | | mrctrymingyan (single model) | 62.20 | 59.72 | - | | (Yan et al., 2018) | 50.71 | 49.39 | - | | (Li et al., 2018) | 44.95 | 42.68 | - | | (Wang et al., 2018) | 44.18 | 40.97 | - | | (Xu et al., 2018) | 39.60 | 34.76 | - |
| Match-LSTM (He et al., 2018) | 39.2 | 31.9 | - | | BiDAF (He et al., 2018) | 39.0 | 31.8 | - |

CMRC 2018

Leaderboard: https://hfl-rc.github.io/cmrc2018/open_challenge/

| System | DEV-EM | DEV-F1 | TEST-EM | TEST-F1 | CHALLENGE-EM | CHALLENGE-F1 | Note | | :------ | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: | | P-Reader (single model) | 59.894 | 81.499 | 65.189 | 84.386 | 15.079 | 39.583 | - | | GM-Reader (ensemble) | 58.931 | 80.069 | 64.045 | 83.046 | 15.675 | 37.315 | - | | MCA-Reader (ensemble) | 66.698 | 85.538 | 71.175 | 88.090 | 15.476 | 37.104 | - | | Z-Reader (single model) | 79.776 | 92.696 | 74.178 | 88.145 | 13.889 | 37.422 | - | | SRC->DS(±) (Yang et al., 2019) | 49.2 | 65.4 | - | - | - | - | - |

More detailed results can be obtained in CMRC 2018 Overview. Note that, some of the submission are using development set for training as well.

DRCD

| System | DEV-EM | DEV-F1 | TEST-EM | TEST-EM | Note | | :------ | :-----: | :-----: | :-----: | :-----: | :-----: | | SRC + DS(±) (Yang et al., 2019) | 55.4 | 67.7 | - | - | - | | r-net (single model) | - | - | 29.1 | 44.4 | - |

C^3

| System | DEV-1A | TEST-1A | DEV-1B | TEST-1B | DEV-2A | TEST-2A | DEV-2B | TEST-2B | Note | | :------ | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: | | BERT_CN (Sun et al., 2019) | 63.0 | 62.6 | 62.3 | 62.1 | 36.7 | 26.2 | 34.7 | 31.3 | - |

Chinese Reading Comprehension Evaluations and Competitions

Along with the release of these datasets, there are also several Chinese Reading Comprehension evaluation workshops or competitions which further accelerate the research on this topic.

  1. The First Evaluation Workshop on Chinese Machine Reading Comprehension (CMRC 2017)
    Host: CIPS-CL, Joint Laboratory of HIT and iFLYTEK Research (HFL), iFLYTEK Co. Ltd
    Competition Type: Cloze-style RC, User Query RC

  2. The Second Evaluation Workshop on Chinese Machine Reading Comprehension (CMRC 2018)
    Host: CIPS-CL, Joint Laboratory of HIT and iFLYTEK Research (HFL), iFLYTEK Co. Ltd
    Competition Type: Span-Extraction RC

  3. 2018 NLP Challenge on Machine Reading Comprehension
    Host: CCF, CIPSC, Baidu Inc.
    Competition Type: Open-Domain RC

  4. CIPS-SOGOU QA Competition
    Host: CIPSC, SOGOU
    Competition Type: Factoid QA, Non-Factoid QA

  5. The Third Evaluation Workshop on Chinese Machine Reading Comprehension (CMRC 2019)
    Host: CIPS-CL, Joint Laboratory of HIT and iFLYTEK Research (HFL), iFLYTEK Co. Ltd
    Competition Type: Sentence Cloze

  6. 2019 NLP Language and Intelligence Challenge
    Host: CCF, CIPSC, Baidu Inc.
    Competition Type: Open-Domain RC

  7. Chinese Idiom Understanding Contest
    Host: CCF, Tsinghua University
    Competition Type: Cloze Test

Contact

For any problems, please leave a message in the

Github Issues
.

Disclaimer

Any subjective comments in this repository only represents the idea of the owner (ymcui), and does not represent the claims of any organizations.

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.