Need help with meta-weight-net?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

xjtushujun
184 Stars 44 Forks MIT License 14 Commits 5 Opened issues

Description

NeurIPS'19: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting (Pytorch implementation for noisy labels).

Services available

!
?

Need anything else?

Contributors list

No Data

Meta-Weight-Net

NeurIPS'19: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting (Official Pytorch implementation for noisy labels). The implementation of class imbalance is available at https://github.com/xjtushujun/Meta-weight-net_class-imbalance.

================================================================================================================================================================

This is the code for the paper: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting
Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, Deyu Meng* To be presented at NeurIPS 2019.

If you find this code useful in your research then please cite

bash
@inproceedings{han2018coteaching,
  title={Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting},
  author={Shu, Jun and Xie, Qi and Yi, Lixuan and Zhao, Qian and Zhou, Sanping and Xu, Zongben and Meng, Deyu},
  booktitle={NeurIPS},
  year={2019}
}

Setups

The requiring environment is as bellow:

  • Linux
  • Python 3+
  • PyTorch 0.4.0
  • Torchvision 0.2.0

Running Meta-Weight-Net on benchmark datasets (CIFAR-10 and CIFAR-100).

Here is an example:

bash
python train_WRN-28-10_Meta_PGC.py --dataset cifar10 --corruption_type unif(flip2) --corruption_prob 0.6

The default network structure is WRN-28-10, if you want to train with ResNet32 model, please reset the learning rate delay policy.

A stable version is relased.

bash
python MW-Net.py --dataset cifar10 --corruption_type unif(flip2) --corruption_prob 0.6

Important Updating Version

The new code on github (https://github.com/ShiYunyi/Meta-Weight-Net_Code-Optimization) has implemented the MW-Net based on the newest pytorch and torchvision version. It rewrites an optimizer to assign non leaf node tensors to model parameters. Thus it does not need to rewrite the nn.Module as this version does. Very thanks for Shi Yunyi ([email protected])!

Acknowledgements

We thank the Pytorch implementation on glc(https://github.com/mmazeika/glc) and learning-to-reweight-examples(https://github.com/danieltan07/learning-to-reweight-examples).

Contact: Jun Shu ([email protected]); Deyu Meng([email protected]).

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.