Need help with fcn?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

wkentaro
211 Stars 98 Forks MIT License 699 Commits 0 Opened issues

Description

Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

Services available

!
?

Need anything else?

Contributors list

# 1,437
Python
semanti...
fcn
pytorch
633 commits
# 63,783
Shell
Common ...
cupy
fcn
2 commits
# 28,764
Python
C
Shell
cudnn
2 commits
# 357,007
fcn
Shell
Common ...
curl
1 commit
# 570,687
C++
Shell
C
fcn
1 commit

fcn - Fully Convolutional Networks

PyPI Version Python Versions GitHub Actions

Chainer implementation of Fully Convolutional Networks.

Installation

pip install fcn

Inference

Inference is done as below:

# forwaring of the networks
img_file=https://farm2.staticflickr.com/1522/26471792680_a485afb024_z_d.jpg
fcn_infer.py --img-files $img_file --gpu -1 -o /tmp  # cpu mode
fcn_infer.py --img-files $img_file --gpu 0 -o /tmp   # gpu mode

Original Image: https://www.flickr.com/photos/faceme/26471792680/

Training

cd examples/voc
./download_datasets.py
./download_models.py

./train_fcn32s.py --gpu 0

./train_fcn16s.py --gpu 0

./train_fcn8s.py --gpu 0

./train_fcn8s_atonce.py --gpu 0

The accuracy of original implementation is computed with (

evaluate.py
) after converting the caffe model to chainer one using
convert_caffe_to_chainermodel.py
.\ You can download vgg16 model from here:
vgg16_from_caffe.npz
.

FCN32s

| Implementation | Accuracy | Accuracy Class | Mean IU | FWAVACC | Model File | |:--------------:|:--------:|:--------------:|:-------:|:-------:|:----------:| | Original | 90.4810 | 76.4824 | 63.6261 | 83.4580 |

fcn32s_from_caffe.npz
| | Ours (using

vgg16_from_caffe.npz
) | 90.5668 | 76.8740 | 63.8180 | 83.5067 | - |

FCN16s

| Implementation | Accuracy | Accuracy Class | Mean IU | FWAVACC | Model File | |:--------------:|:--------:|:--------------:|:-------:|:-------:|:----------:| | Original | 90.9971 | 78.0710 | 65.0050 | 84.2614 |

fcn16s_from_caffe.npz
| | Ours (using

fcn32s_from_caffe.npz
) | 90.9671 | 78.0617 | 65.0911 | 84.2604 | - | | Ours (using
fcn32s_voc_iter00092000.npz
) | 91.1009 | 77.2522 | 65.3628 | 84.3675 | - |

FCN8s

| Implementation | Accuracy | Accuracy Class | Mean IU | FWAVACC | Model File | |:--------------:|:--------:|:--------------:|:-------:|:-------:|:----------:| | Original | 91.2212 | 77.6146 | 65.5126 | 84.5445 |

fcn8s_from_caffe.npz
| | Ours (using

fcn16s_from_caffe.npz
) | 91.2513 | 77.1490 | 65.4789 | 84.5460 | - | | Ours (using
fcn16s_voc_iter00100000.npz
) | 91.2608 | 78.1484 | 65.8444 | 84.6447 | - |

FCN8sAtOnce

| Implementation | Accuracy | Accuracy Class | Mean IU | FWAVACC | Model File | |:--------------:|:--------:|:--------------:|:-------:|:-------:|:----------:| | Original | 91.1288 | 78.4979 | 65.3998 | 84.4326 |

fcn8s-atonce_from_caffe.npz
| | Ours (using

vgg16_from_caffe.npz
) | 91.0883 | 77.3528 | 65.3433 | 84.4276 | - |

Left to right, FCN32s, FCN16s and FCN8s, which are fully trained using this repo. See above tables to see the accuracy.

License

See LICENSE.

Cite This Project

If you use this project in your research or wish to refer to the baseline results published in the README, please use the following BibTeX entry.

@misc{chainer-fcn2016,
  author =       {Ketaro Wada},
  title =        {{fcn: Chainer Implementation of Fully Convolutional Networks}},
  howpublished = {\url{https://github.com/wkentaro/fcn}},
  year =         {2016}
}

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.