Need help with FPN?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

unsky
480 Stars 255 Forks 33 Commits 64 Opened issues

Description

Feature Pyramid Networks for Object Detection

Services available

!
?

Need anything else?

Contributors list

Feature Pyramid Network on caffe

This is the unoffical version Feature Pyramid Network for Feature Pyramid Networks for Object Detection https://arxiv.org/abs/1612.03144

results

FPN(resnet50)-end2end result is implemented without OHEM and train with pascal voc 2007 + 2012 test on 2007

merged rcnn

|[email protected]|aeroplane|bicycle|bird|boat|bottle|bus|car|cat|chair|cow| |:--:|:-------:| -----:| --:| --:|-----:|--:|--:|--:|----:|--:| |0.788|0.8079| 0.8036| 0.8010| 0.7293|0.6743|0.8680|0.8766|0.8967|0.6122|0.8646|

|diningtable|dog |horse|motorbike|person |pottedplant|sheep|sofa|train|tv| |----------:|:--:|:---:| -------:| -----:| -------:|----:|---:|----:|--:| |0.7330|0.8855|0.8760| 0.8063| 0.7999| 0.5138|0.7905|0.7755|0.8637|0.7736|

shared rcnn

|[email protected]|aeroplane|bicycle|bird|boat|bottle|bus|car|cat|chair|cow| |:--:|:-------:| -----:| --:| --:|-----:|--:|--:|--:|----:|--:| |0.7833|0.8585| 0.8001| 0.7970| 0.7174|0.6522|0.8668|0.8768|0.8929|0.5842|0.8658|

|diningtable|dog |horse|motorbike|person |pottedplant|sheep|sofa|train|tv| |----------:|:--:|:---:| -------:| -----:| -------:|----:|---:|----:|--:| |0.7022|0.8891|0.8680| 0.7991| 0.7944| 0.5065|0.7896|0.7707|0.8697|0.7653|

framework

megred rcnn framework

Network overview: link

shared rcnn

Network overview: link

the red and yellow are shared params

about the anchor size setting

In the paper the anchor setting is

Ratios: [0.5,1,2],scales :[8,]

With the setting and P2~P6, all anchor sizes are

[32,64,128,512,1024]
,but this setting is suit for COCO dataset which has so many small targets.

But the voc dataset targets are range

[128,256,512]
.

So, we desgin the anchor setting:

Ratios: [0.5,1,2],scales :[8,16]
, this is very import for voc dataset.

usage

download voc07,12 dataset

ResNet50.caffemodel
and rename to
ResNet50.v2.caffemodel
cp ResNet50.v2.caffemodel data/pretrained_model/
  • OneDrive download: link

In my expriments, the codes require ~10G GPU memory in training and ~6G in testing. 
your can design the suit image size, mimbatch size and rcnn batch size for your GPUS.

compile caffe & lib

cd caffe-fpn
mkdir build
cd build
cmake ..
make -j16 all
cd lib
make 

train & test

shared rcnn

bash
./experiments/scripts/FP_Net_end2end.sh 1 FPN pascal_voc
./test.sh 1 FPN pascal_voc
megred rcnn
bash
 ./experiments/scripts/FP_Net_end2end_merge_rcnn.sh 0 FPN pascal_voc
 ./test_mergercnn.sh 0 FPN pascal_voc
0 1 is GPU id.

TODO List

  • [x] all tests passed
  • [x] evaluate object detection performance on voc
  • [x] evaluate merged rcnn version performance on voc

feature pyramid networks for object detection

Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2016). Feature pyramid networks for object detection. arXiv preprint arXiv:1612.03144.

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.