Need help with labelImg?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

tzutalin
12.6K Stars 4.2K Forks MIT License 379 Commits 256 Opened issues

Description

🖍️ LabelImg is a graphical image annotation tool and label object bounding boxes in images

Services available

!
?

Need anything else?

Contributors list

No Data

LabelImg

.. image:: https://img.shields.io/pypi/v/labelimg.svg :target: https://pypi.python.org/pypi/labelimg

.. image:: https://img.shields.io/travis/tzutalin/labelImg.svg :target: https://travis-ci.org/tzutalin/labelImg

.. image:: /resources/icons/app.png :width: 200px :align: center

LabelImg is a graphical image annotation tool.

It is written in Python and uses Qt for its graphical interface.

Annotations are saved as XML files in PASCAL VOC format, the format used by

ImageNet 
__. Besides, it also supports YOLO format

.. image:: https://raw.githubusercontent.com/tzutalin/labelImg/master/demo/demo3.jpg :alt: Demo Image

.. image:: https://raw.githubusercontent.com/tzutalin/labelImg/master/demo/demo.jpg :alt: Demo Image

Watch a demo video 
__

Installation

Build from source ~~~~~~~~~~~~~~~~~

Linux/Ubuntu/Mac requires at least

Python
2.6 
__ and has been tested with
PyQt
4.8 
. However,
Python
3 or above 
and
PyQt5 
__ are strongly recommended.

Ubuntu Linux ^^^^^^^^^^^^

Python 3 + Qt5

.. code:: shell

sudo apt-get install pyqt5-dev-tools
sudo pip3 install -r requirements/requirements-linux-python3.txt
make qt5py3
python3 labelImg.py
python3 labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

macOS ^^^^^

Python 3 + Qt5

.. code:: shell

brew install qt  # Install qt-5.x.x by Homebrew
brew install libxml2

or using pip

pip3 install pyqt5 lxml # Install qt and lxml by pip

make qt5py3 python3 labelImg.py python3 labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

Python 3 Virtualenv (Recommended)

Virtualenv can avoid a lot of the QT / Python version issues

.. code:: shell

brew install python3
pip3 install pipenv
pipenv run pip install pyqt5==5.12.1 lxml
pipenv run make qt5py3
python3 labelImg.py
[Optional] rm -rf build dist; python setup.py py2app -A;mv "dist/labelImg.app" /Applications

Note: The Last command gives you a nice .app file with a new SVG Icon in your /Applications folder. You can consider using the script: build-tools/build-for-macos.sh

Windows ^^^^^^^

Install

Python 
,
PyQt5 
and
install lxml 
__.

Open cmd and go to the

labelImg 
__ directory

.. code:: shell

pyrcc4 -o lib/resources.py resources.qrc
For pyqt5, pyrcc5 -o libs/resources.py resources.qrc

python labelImg.py python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

Windows + Anaconda ^^^^^^^^^^^^^^^^^^

Download and install

Anaconda 
__ (Python 3+)

Open the Anaconda Prompt and go to the

labelImg 
__ directory

.. code:: shell

conda install pyqt=5
conda install -c anaconda lxml
pyrcc5 -o libs/resources.py resources.qrc
python labelImg.py
python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

Get from PyPI but only python3.0 or above ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This is the simplest (one-command) install method on modern Linux distributions such as Ubuntu and Fedora.

.. code:: shell

pip3 install labelImg
labelImg
labelImg [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

Use Docker ~~~~~~~~~~~~~~~~~ .. code:: shell

docker run -it \
--user $(id -u) \
-e DISPLAY=unix$DISPLAY \
--workdir=$(pwd) \
--volume="/home/$USER:/home/$USER" \
--volume="/etc/group:/etc/group:ro" \
--volume="/etc/passwd:/etc/passwd:ro" \
--volume="/etc/shadow:/etc/shadow:ro" \
--volume="/etc/sudoers.d:/etc/sudoers.d:ro" \
-v /tmp/.X11-unix:/tmp/.X11-unix \
tzutalin/py2qt4

make qt4py2;./labelImg.py

You can pull the image which has all of the installed and required dependencies.

Watch a demo video 
__

Usage

Steps (PascalVOC) ~~~~~~~~~~~~~~~~~

  1. Build and launch using the instructions above.
  2. Click 'Change default saved annotation folder' in Menu/File
  3. Click 'Open Dir'
  4. Click 'Create RectBox'
  5. Click and release left mouse to select a region to annotate the rect box
  6. You can use right mouse to drag the rect box to copy or move it

The annotation will be saved to the folder you specify.

You can refer to the below hotkeys to speed up your workflow.

Steps (YOLO) ~~~~~~~~~~~~

  1. In

    data/predefined_classes.txt
    define the list of classes that will be used for your training.
  2. Build and launch using the instructions above.

  3. Right below "Save" button in the toolbar, click "PascalVOC" button to switch to YOLO format.

  4. You may use Open/OpenDIR to process single or multiple images. When finished with a single image, click save.

A txt file of YOLO format will be saved in the same folder as your image with same name. A file named "classes.txt" is saved to that folder too. "classes.txt" defines the list of class names that your YOLO label refers to.

Note:

  • Your label list shall not change in the middle of processing a list of images. When you save an image, classes.txt will also get updated, while previous annotations will not be updated.

  • You shouldn't use "default class" function when saving to YOLO format, it will not be referred.

  • When saving as YOLO format, "difficult" flag is discarded.

Create pre-defined classes ~~~~~~~~~~~~~~~~~~~~~~~~~~

You can edit the

data/predefined\_classes.txt 
__ to load pre-defined classes

Hotkeys ~~~~~~~

+--------------------+--------------------------------------------+ | Ctrl + u | Load all of the images from a directory | +--------------------+--------------------------------------------+ | Ctrl + r | Change the default annotation target dir | +--------------------+--------------------------------------------+ | Ctrl + s | Save | +--------------------+--------------------------------------------+ | Ctrl + d | Copy the current label and rect box | +--------------------+--------------------------------------------+ | Ctrl + Shift + d | Delete the current image | +--------------------+--------------------------------------------+ | Space | Flag the current image as verified | +--------------------+--------------------------------------------+ | w | Create a rect box | +--------------------+--------------------------------------------+ | d | Next image | +--------------------+--------------------------------------------+ | a | Previous image | +--------------------+--------------------------------------------+ | del | Delete the selected rect box | +--------------------+--------------------------------------------+ | Ctrl++ | Zoom in | +--------------------+--------------------------------------------+ | Ctrl-- | Zoom out | +--------------------+--------------------------------------------+ | ↑→↓← | Keyboard arrows to move selected rect box | +--------------------+--------------------------------------------+

Verify Image:

When pressing space, the user can flag the image as verified, a green background will appear. This is used when creating a dataset automatically, the user can then through all the pictures and flag them instead of annotate them.

Difficult:

The difficult field is set to 1 indicates that the object has been annotated as "difficult", for example, an object which is clearly visible but difficult to recognize without substantial use of context. According to your deep neural network implementation, you can include or exclude difficult objects during training.

How to reset the settings ~~~~~~~~~~~~~~~~~~~~~~~~~

In case there are issues with loading the classes, you can either:

  1. From the top menu of the labelimg click on Menu/File/Reset All
  2. Remove the
    .labelImgSettings.pkl
    from your home directory. In Linux and Mac you can do:
    rm ~/.labelImgSettings.pkl

How to contribute ~~~~~~~~~~~~~~~~~

Send a pull request

License ~~~~~~~

Free software: MIT license 
_

Citation: Tzutalin. LabelImg. Git code (2015). https://github.com/tzutalin/labelImg

Related ~~~~~~~

  1. ImageNet Utils 
    __ to download image, create a label text for machine learning, etc
  2. Use Docker to run labelImg 
    __
  3. Generating the PASCAL VOC TFRecord files 
    __
  4. App Icon based on Icon by Nick Roach (GPL) 
    __
  5. Setup python development in vscode 
    __
  6. The link of this project on iHub platform 
    __

Stargazers over time ~~~~~~~~~~~~~~~~~~~~

.. image:: https://starchart.cc/tzutalin/labelImg.svg

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.