The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2. https://arxiv.org/abs/2003.05176
Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan
arXiv] [
BibTeX]
In this repository, we release code for Equalization Loss (EQL) in Detectron2. EQL protects the learning for rare categories from being at a disadvantage during the network parameter updating under the long-tailed situation.
Install Detectron 2 following INSTALL.md. You are ready to go!
Following the instruction of README.md to set up the lvis dataset.
To train a model with 8 GPUs run:
bash cd /path/to/detectron2/projects/EQL python train_net.py --config-file configs/eql_mask_rcnn_R_50_FPN_1x.yaml --num-gpus 8
Model evaluation can be done similarly:
bash cd /path/to/detectron2/projects/EQL python train_net.py --config-file configs/eql_mask_rcnn_R_50_FPN_1x.yaml --eval-only MODEL.WEIGHTS /path/to/model_checkpoint
Backbone | Method | AP | AP.r | AP.c | AP.f | AP.bbox | download |
---|---|---|---|---|---|---|---|
R50-FPN | MaskRCNN | 21.2 | 3.2 | 21.1 | 28.7 | 20.8 | model | metrics |
R50-FPN | MaskRCNN-EQL | 24.0 | 9.4 | 25.2 | 28.4 | 23.6 | model | metrics |
R50-FPN | MaskRCNN-EQL-Resampling | 26.1 | 17.2 | 27.3 | 28.2 | 25.4 | model | metrics |
R101-FPN | MaskRCNN | 22.8 | 4.3 | 22.7 | 30.2 | 22.3 | model | metrics |
R101-FPN | MaskRCNN-EQL | 25.9 | 10.0 | 27.9 | 29.8 | 25.9 | model | metrics |
R101-FPN | MaskRCNN-EQL-Resampling | 27.4 | 17.3 | 29.0 | 29.4 | 27.1 | model | metrics |
The AP in this repository is higher than that of the origin paper. Because all those models use:
Note that the final results of these configs have large variance across different runs.
If you use EQL, please use the following BibTeX entry.
@InProceedings{tan2020eql, title={Equalization Loss for Long-Tailed Object Recognition}, author={Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan}, journal={ArXiv:2003.05176}, year={2020} }