Need help with tidygraph?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

thomasp85
409 Stars 39 Forks Other 215 Commits 45 Opened issues

Description

A tidy API for graph manipulation

Services available

!
?

Need anything else?

Contributors list

tidygraph

R build
status CRAN\_Release\_Badge CRAN\_Download\_Badge Coverage
Status <!-- badges: end -->

This package provides a tidy API for graph/network manipulation. While network data itself is not tidy, it can be envisioned as two tidy tables, one for node data and one for edge data.

tidygraph
provides a way to switch between the two tables and provides
dplyr
verbs for manipulating them. Furthermore it provides access to a lot of graph algorithms with return values that facilitate their use in a tidy workflow.

An example

library(tidygraph)

play_erdos_renyi(10, 0.5) %>% activate(nodes) %>% mutate(degree = centrality_degree()) %>% activate(edges) %>% mutate(centrality = centrality_edge_betweenness()) %>% arrange(centrality) #> # A tbl_graph: 10 nodes and 46 edges #> # #> # A directed simple graph with 1 component #> # #> # Edge Data: 46 x 3 (active) #> from to centrality #> * #> 1 1 8 1.33 #> 2 5 8 1.42 #> 3 5 3 1.75 #> 4 3 7 1.75 #> 5 5 7 1.92 #> 6 5 1 2.00 #> # … with 40 more rows #> # #> # Node Data: 10 x 1 #> degree #> #> 1 5 #> 2 6 #> 3 4 #> # … with 7 more rows

Overview

tidygraph
is a huge package that exports 280 different functions and methods. It more or less wraps the full functionality of
igraph
in a tidy API giving you access to almost all of the
dplyr
verbs plus a few more, developed for use with relational data.

More verbs

tidygraph
adds some extra verbs for specific use in network analysis and manipulation. The
activate()
function defines whether one is manipulating node or edge data at the moment as shown in the example above.
bind_edges()
,
bind_nodes()
, and
bind_graphs()
let you expand the graph structure you’re working with, while
graph_join()
lets you merge two graphs on some node identifier.
reroute()
, on the other hand, lets you change the terminal nodes of the edges in the graph.

More algorithms

tidygraph
wraps almost all of the graph algorithms from
igraph
and provides a consistent interface and output that always matches the sequence of nodes and edges. All
tidygraph
algorithm wrappers are intended for use inside verbs where they know the context they are being called in. In the example above it is not necessary to supply the graph nor the node/edge IDs to
centrality_degree()
and
centrality_edge_betweenness()
as they are aware of them already. This leads to much clearer code and less typing.

More maps

tidygraph
goes beyond
dplyr
and also implements graph centric version of the
purrr
map functions. You can now call a function on the nodes in the order of a breadth or depth first search while getting access to the result of the previous calls.

More morphs

tidygraph
lets you temporarily change the representation of your graph, do some manipulation of the node and edge data, and then change back to the original graph with the changes being merged in automatically. This is powered by the new
morph()
/
unmorph()
verbs that let you e.g. contract nodes, work on the linegraph representation, split communities to separate graphs etc. If you wish to continue with the morphed version, the
crystallise()
verb lets you freeze the temporary representation into a proper
tbl_graph
.

More data structure support

While

tidygraph
is powered by igraph underneath it wants everyone to join the fun. The
as_tbl_graph()
function can easily convert relational data from all your favourite objects, such as
network
,
phylo
,
dendrogram
,
data.tree
,
graph
, etc. More conversion will be added in the order I become aware of them.

Visualisation

tidygraph
itself does not provide any means of visualisation, but it works flawlessly with
ggraph
. This division makes it easy to develop the visualisation and manipulation code at different speeds depending on where the needs arise.

Installation

tidygraph
is available on CRAN and can be installed simply, using
install.packages('tidygraph')
. For the development version available on GitHub, use the
devtools
package for installation:
# install.packages('devtools')
devtools::install_github('thomasp85/tidygraph')

Thanks

tidygraph
stands on the shoulders of particularly the
igraph
and
dplyr
/
tidyverse
teams. It would not have happened without them, so thanks so much to them.

Code of Conduct

Please note that the ‘tidygraph’ project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.