Need help with captcha_trainer_pytorch?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

sml2h3
166 Stars 38 Forks Apache License 2.0 3 Commits 2 Opened issues

Description

基于MobileNetV2/EfficientNet-b0/... + LSTM + CTC的不定长图像识别训练pytorch框架

Services available

!
?

Need anything else?

Contributors list

# 135,414
Python
Go
efficie...
mobilen...
3 commits

captchatrainerpytorch

项目介绍

不定长验证码识别训练工具,基于Pytorch 1.6开发,神经网络结构为: CNN + LSTM + CTC。

本项目主要用于不定长验证码的训练,包含有模型预测推理的demo.

支持CPU/GPU训练,CPU训练速度缓慢,GPU训练速度约为CPU的50倍.

训练完成后部署可使用CPU,可无需使用GPU,CPU识别速度约为10-25ms.

项目参考: https://github.com/ghosthamlet/captcha_trainer .

使用提醒:使用本项目默认认为您已经具备了必要pytorch安装知识,python基础开发能力或有一定辨别错误类型或调试的能力。

项目使用手册

1. 初始化项目目录

```shell script python main.py init

example: python main.py init test_framework ```

本条命令中为您的项目名称,如您的项目名称为test_framework,则运行上面example中的命令

其中为必填参数.

2. 导入数据集

```shell script python main.py data

example: python main.py data testframework D:\images python main.py data testframework /mnt/images ```

本命令背后的支持模块仅支持 jpg、png、jpeg和bmp格式的图片数据,且统一存放在目录下,样本需要按照abcd_xx.jpg的格式存放,abcd为您图像的具体标签,xx为任意随机值,用于区分同一标签的不同图像。

运行本命令后,工具会自动按照参数scale的值进行比例切割样本集为训练集和测试集,并在过程中检测图像的合法性,结果将被导出为两个包含有图像路径的json文件中。

scale参数应当小于1且大于0,数值代表的是训练集数目占全体样本数目的比例.

words参数为是否保留标签为一个单词整体,如abcd_xx.jpg命名的样本,默认words为False时标签将会被看作["a", "b", "c", "d"],如words为True时,标签将被视为["abcd"]

参数中projectname和imagespath为必填,scale和words非必填

3. 训练项目

```shell script python main.py train

example: python main.py train test_framework ``` 这里就没啥好说的了~~~

训练过程中会在projects中对应项目名称的文件夹中的models文件夹生成pkl文件,用于训练中断后的恢复以及保存训练状态。

训练完成后会在graphs目录下生成onnx模型,在下一步中提供了调用onnx模型进行预测推理的demo,也可以自行研究移植到其他平台下调用。

4. 推理预测

修改server.py

shell script
python server.py

5. 配置项讲解

经过第1步,在projects目录下会生成对应项目名称的文件夹,其中会生成一个config.yaml文件。

Model:
  CharSet: '["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d",
    "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t",
    "u", "v", "w", "x", "y", "z"]' # 默认字符集,无需修改,在导入样本后会自动更新此项
  ImageChannel: 1 # 训练时期待的图像通道数,1为黑白,3为彩图
  ImageHeight: 50 # 原始图片的高度,其实改不改这里无所谓,暂时用不上
  ImageWidth: 150 # 原始图片的宽度,其实改不改这里无所谓,暂时用不上
  RESIZE: # 图像尺寸归一化
  - 150 # RESIZE 宽度
  - 50  # RESIZE 高度
  Word: false # 标签切割方式,配置里的这个暂时用不上
System:
  GPU: true # 是否启用GPU进行训练
  GPU_ID: 0 # 机器有多卡时指定用于训练的GPU的ID,默认从0开始
  Project: test_framework # 项目名称
Train:
  BATCH_SIZE: 32 # 训练时一个BATCH中有多少张图
  CNN:
    NAME: MobileNetV2 # 特征提取层的神经网络名称,目前支持有MobileNetV2和EfficientNet-b0
  LR: 0.01 # 学习率
  LSTM:
    DROPOUT: 0.8
    HIDDEN_NUM: 64
  OPTIMIZER: Momentum # 优化器,目前支持有Momentum以及Adam
  RNN:
    NAME: LSTM
  TARGET:
    Accuracy: 0.97 # 训练目标准确率,1为100%正确
    Cost: 0.005 # 目标损失率
    Epoch: 200
  TEST_BATCH_SIZE: 32 # 测试时一个BATCH中有多少张图
  TEST_STEP: 1000 

当前版本目前支持的特征提取层的网络为 MobileNetV2、EfficientNet-b0

qcc_tensorflow_trainer

查企业就上企查查

文安哲

当前版本号: v0.01

交流QQ群:778910502

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.