by scikit-video

scikit-video /scikit-video

Video Processing in Python

465 Stars 103 Forks Last release: about 2 years ago (1.1.11) Other 506 Commits 7 Releases

Available items

No Items, yet!

The developer of this repository has not created any items for sale yet. Need a bug fixed? Help with integration? A different license? Create a request here:

.. -- mode: rst --


|BSD3|_ |Travis|_ |Coveralls|_ |CircleCI|_ |Python27|_ |Python35|_ |PyPi|_

.. |BSD3| image:: .. _BSD3:

.. |Travis| image:: .. _Travis:

.. |Coveralls| image:: .. _Coveralls:

.. |CircleCI| image:: .. _CircleCI:

.. |Python27| image:: .. _Python27:

.. |Python35| image:: .. _Python35:

.. |PyPi| image:: .. _PyPi:

.. |skvideologo| image:: doc/images/scikit-video.png .. _skvideologo:

Video Processing SciKit

Borrowing coding styles and conventions from scikit-image and scikit-learn, scikit-video is a Python module for video processing built on top of scipy, numpy, and ffmpeg/libav.

This project is distributed under the 3-clause BSD.

Visit the documentation at

Dependencies and Installation

Here are the requirements needed to use scikit-video.

  • Either ffmpeg (version >= 2.8) or libav (either version 10 or 11)
  • python (2.7, 3.3<=)
  • numpy (version >= 1.9.2)
  • scipy (version >= 0.16.0)
  • PIL/Pillow (version >= 3.1)
  • scikit-learn (version >= 0.18)
  • mediainfo (optional)


$ sudo pip install scikit-video

Installing from github

  1. Make sure minimum dependencies (above) are installed. In addition, install setuptools (python-setuptools or python2-setuptools).

  2. Clone the scikit-video repository, enter the project directory, then run::

$ python build

  1. In that same project directory, run the command::

$ sudo python install


may refer to either python2 or python3.

Known conflicts

If you installed scikit-video prior to version 1.1.10, you may have an import conflict. Run the following command(s) to fix it::

$ sudo pip uninstall sk-video

Then To check that the conflict no longer exists, import skvideo and print the file path::

import skvideo

if setup correctly, you should see

in the path::



  • Spatial-Temporal filtering helper functions
  • Speedup routines (using cython and/or opencl)
  • More ffmpeg/avconv interfacing
  • Wrapping ffmpeg/avconv inside a subprocess to reduce memory overhead
  • Add additional algorithms and maintain more comprehensive benchmarks

For Contributors

Quick tutorial on how to go about setting up your environment to contribute to scikit-video:


After installation, you can launch the test suite from outside the source directory (you will need to have the nose package installed). To ensure that both python2 and python3 versions pass::

$ nosetests2 -v skvideo
$ nosetests3 -v skvideo

Copyright 2015-2019, scikit-video developers (BSD license).

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.