A toolkit for symbolic music generation
MusPy is an open source Python library for symbolic music generation. It provides essential tools for developing a music generation system, including dataset management, data I/O, data preprocessing and model evaluation.
A music generation pipeline usually consists of several steps: data collection, data preprocessing, model creation, model training and model evaluation. While some components need to be customized for each model, others can be shared across systems. For symbolic music generation in particular, a number of datasets, representations and metrics have been proposed in the literature. As a result, an easy-to-use toolkit that implements standard versions of such routines could save a great deal of time and effort and might lead to increased reproducibility.
To install MusPy, please run
pip install muspy. To build MusPy from source, please download the source and run
python setup.py install.
Documentation is available here and as docstrings with the code.
Please cite the following paper if you use MusPy in a published work:
Hao-Wen Dong, Ke Chen, Julian McAuley, and Taylor Berg-Kirkpatrick, "MusPy: A Toolkit for Symbolic Music Generation," in Proceedings of the 21st International Society for Music Information Retrieval Conference (ISMIR), 2020.
[homepage] [video] [paper] [slides] [poster] [arXiv] [code] [documentation]
This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.
If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the community!