Github url


by rust-lang

rust-lang /rust

Empowering everyone to build reliable and efficient software.

46.5K Stars 6.9K Forks Last release: Not found Other 123.0K Commits 85 Releases

Available items

No Items, yet!

The developer of this repository has not created any items for sale yet. Need a bug fixed? Help with integration? A different license? Create a request here:

The Rust Programming Language

This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.

Note: this README is for users rather than contributors.

Quick Start

Read "Installation" from The Book.

Installing from Source

Note: If you wish to contribute to the compiler, you should read theGetting Started of the rustc-dev-guide instead of this section.

The Rust build system uses a Python script called

to build the compiler, which manages the bootstrapping process. More information about it can be found by running

./ --help

or reading the rustc dev guide.

Building on a Unix-like system

  1. Make sure you have installed the dependencies:
  • g++
    5.1 or later or
    3.5 or later
  • python
    3 or 2.7
  • GNU
    3.81 or later
  • cmake
    3.4.3 or later
  • curl
  • git
  • ssl
    which comes in
  • pkg-config
    if you are compiling on Linux and targeting Linux
  1. Clone the source with
$ git clone $ cd rust
  1. Configure the build settings:

The Rust build system uses a file named


in the root of the source tree to determine various configuration settings for the build. Copy the default




to get started.

$ cp config.toml.example config.toml

If you plan to use install

to create an installation, it is recommended that you set the


value in the


section to a directory.

Create install directory if you are not installing in default directory

  1. Build and install:

$ ./ build && ./ install

When complete,

./ install

will place several programs into




, the Rust compiler, and


, the API-documentation tool. This install does not include Cargo, Rust's package manager. To build and install Cargo, you may run

./ install cargo

or set the


key in




to build and install all tools.

Building on Windows

There are two prominent ABIs in use on Windows: the native (MSVC) ABI used by Visual Studio, and the GNU ABI used by the GCC toolchain. Which version of Rust you need depends largely on what C/C++ libraries you want to interoperate with: for interop with software produced by Visual Studio use the MSVC build of Rust; for interop with GNU software built using the MinGW/MSYS2 toolchain use the GNU build.


MSYS2 can be used to easily build Rust on Windows:

  1. Grab the latest MSYS2 installer and go through the installer.





from wherever you installed MSYS2 (i.e.


), depending on whether you want 32-bit or 64-bit Rust. (As of the latest version of MSYS2 you have to run

msys2\_shell.cmd -mingw32


msys2\_shell.cmd -mingw64

from the command line instead) 3. From this terminal, install the required tools:

# Update package mirrors (may be needed if you have a fresh install of MSYS2) $ pacman -Sy pacman-mirrors # Install build tools needed for Rust. If you're building a 32-bit compiler, # then replace "x86\_64" below with "i686". If you've already got git, python, # or CMake installed and in PATH you can remove them from this list. Note # that it is important that you do \*\*not\*\* use the 'python2' and 'cmake' # packages from the 'msys2' subsystem. The build has historically been known # to fail with these packages. $ pacman -S git \ make \ diffutils \ tar \ mingw-w64-x86\_64-python \ mingw-w64-x86\_64-cmake \ mingw-w64-x86\_64-gcc
  1. Navigate to Rust's source code (or clone it), then build it:
$ ./ build && ./ install


MSVC builds of Rust additionally require an installation of Visual Studio 2017 (or later) so


can use its linker. The simplest way is to get theVisual Studio, check the “C++ build tools” and “Windows 10 SDK” workload.

(If you're installing cmake yourself, be careful that “C++ CMake tools for Windows” doesn't get included under “Individual components”.)

With these dependencies installed, you can build the compiler in a


shell with:

\> python build

Currently, building Rust only works with some known versions of Visual Studio. If you have a more recent version installed and the build system doesn't understand, you may need to force rustbuild to use an older version. This can be done by manually calling the appropriate vcvars file before running the bootstrap.

\> CALL "C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvars64.bat" \> python build

Building rustc with older host toolchains

It is still possible to build Rust with the older toolchain versions listed below, but only if the LLVM_TEMPORARILY_ALLOW_OLD_TOOLCHAIN option is set to true in the config.toml file.

  • Clang 3.1
  • Apple Clang 3.1
  • GCC 4.8
  • Visual Studio 2015 (Update 3)

Toolchain versions older than what is listed above cannot be used to build rustc.

Specifying an ABI

Each specific ABI can also be used from either environment (for example, using the GNU ABI in PowerShell) by using an explicit build triple. The available Windows build triples are: - GNU ABI (using GCC) -

  • x86\_64-pc-windows-gnu
    • The MSVC ABI -
  • x86\_64-pc-windows-msvc

The build triple can be specified by either specifying


when invoking

commands, or by copying the


file (as described in Installing From Source), and modifying the


option under the



Configure and Make

While it's not the recommended build system, this project also provides a configure script and makefile (the latter of which just invokes


$ ./configure $ make && sudo make install

When using the configure script, the generated

file may override the


file. To go back to the


file, delete the generated


Building Documentation

If you’d like to build the documentation, it’s almost the same:

$ ./ doc

The generated documentation will appear under


in the


directory for the ABI used. I.e., if the ABI was


, the directory will be




Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier stage of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.

Snapshot binaries are currently built and tested on several platforms:

| Platform / Architecture | x86 | x86_64 | |----------------------------|-----|--------| | Windows (7, 8, 10, ...) | ✓ | ✓ | | Linux (2.6.18 or later) | ✓ | ✓ | | macOS (10.7 Lion or later) | ✓ | ✓ |

You may find that other platforms work, but these are our officially supported build environments that are most likely to work.

Getting Help

The Rust community congregates in a few places:


If you are interested in contributing to the Rust project, please take a look at the Getting Started guide in the [rustc-dev-guide].


Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.



The Rust programming language is an open source, community project governed by a core team. It is also sponsored by the Mozilla Foundation (“Mozilla”), which owns and protects the Rust and Cargo trademarks and logos (the “Rust Trademarks”).

If you want to use these names or brands, please read the media guide.

Third-party logos may be subject to third-party copyrights and trademarks. SeeLicenses for details.

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.