Need help with Daikon?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

rii-mango
164 Stars 41 Forks Other 322 Commits 20 Opened issues

Description

A JavaScript DICOM reader.

Services available

!
?

Need anything else?

Contributors list

# 172,702
HTML
CSS
Shell
182 commits
# 265,524
HTML
CSS
Shell
100 commits
# 44,195
HTML
gpgpu
glsl
Mongoos...
4 commits
# 748,087
JavaScr...
HTML
2 commits
# 721,217
HTML
CSS
Shell
1 commit

Daikon

Daikon is a pure JavaScript DICOM reader. Here are some of its features:

  • Works in the browser and Node.js environments.
  • Parses DICOM headers and reads image data.
  • Supports compressed DICOM data.
  • Orders and concatenates multi-file image data.
  • Supports RGB and Palette data.
  • Supports Siemens "Mosaic" image data.
  • Parses Siemens CSA header.

Supported Transfer Syntax

Uncompressed: - 1.2.840.10008.1.2 (Implicit VR Little Endian) - 1.2.840.10008.1.2.1 (Explicit VR Little Endian) - 1.2.840.10008.1.2.2 (Explicit VR Big Endian)

Compressed: - 1.2.840.10008.1.2.1.99 (Deflated Explicit VR Little Endian) - 1.2.840.10008.1.2.4.50 (JPEG Baseline (Process 1) Lossy JPEG 8-bit) - 1.2.840.10008.1.2.4.51 (JPEG Baseline (Processes 2 & 4) Lossy JPEG 12-bit) - 1.2.840.10008.1.2.4.57 (JPEG Lossless, Nonhierarchical (Processes 14)) - 1.2.840.10008.1.2.4.70 (JPEG Lossless, Nonhierarchical (Processes 14 [Selection 1])) - 1.2.840.10008.1.2.4.80 (JPEG-LS Image Compression (Lossless Only)) - 1.2.840.10008.1.2.4.81 (JPEG-LS Image Compression) - 1.2.840.10008.1.2.4.90 (JPEG 2000 Image Compression (Lossless Only)) - 1.2.840.10008.1.2.4.91 (JPEG 2000 Image Compression) - 1.2.840.10008.1.2.5 (RLE Lossless)

Usage

API and more examples

Simple Example

daikon.Parser.verbose = true;
var image = daikon.Series.parseImage(data);
var rawData = image.getRawData();  // ArrayBuffer
var interpretedData = image.getInterpretedData();  // Float32Array (handles byte order, datatype, scale, mask)
//var interpretedData = image.getInterpretedData(true);  // Array
//var interpretedData = image.getInterpretedData(false, true);  // Object with properties: data, min, max, minIndex, maxIndex, numCols, numRows

Series Example

var series = new daikon.Series();
var files = fs.readdirSync('./data/volume/');

// iterate over files for (var ctr in files) { var name = './data/volume/' + files[ctr]; var buf = fs.readFileSync(name);

// parse DICOM file
var image = daikon.Series.parseImage(new DataView(toArrayBuffer(buf)));

if (image === null) {
    console.error(daikon.Series.parserError);
} else if (image.hasPixelData()) {
    // if it's part of the same series, add it
    if ((series.images.length === 0) || 
            (image.getSeriesId() === series.images[0].getSeriesId())) {
        series.addImage(image);
    }
}

}

// order the image files, determines number of frames, etc. series.buildSeries();

// output some header info console.log("Number of images read is " + series.images.length); console.log("Each slice is " + series.images[0].getCols() + " x " + series.images[0].getRows()); console.log("Each voxel is " + series.images[0].getBitsAllocated() + " bits, " + (series.images[0].littleEndian ? "little" : "big") + " endian");

// concat the image data into a single ArrayBuffer series.concatenateImageData(null, function (imageData) { console.log("Total image data size is " + imageData.byteLength + " bytes"); });

Browser

See tests/browser.html for an example. For a more advanced example, see this class in Papaya.

Install

Get a packaged source file:

Or install via NPM:

npm install daikon

Or install via Bower:

bower install daikon

Testing

npm test

Building

See the release folder for the latest builds or build it yourself using:

npm run build
This will output daikon.js and daikon-min.js to build/.

Acknowledgments

Daikon makes use of JPEGLosslessDecoderJS for JPEG Lossless support as well as the following third-party libraries: - g-squared for JPEG Baseline support. - image-JPEG2000 for JPEG 2000 support.

Also thanks to these contributors: - @DLiblik - @nickhingston

Disclaimer

The authors of this software have not sought nor received approval for clinical/diagnostic use of this software library.

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.