Need help with request?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

request
24.9K Stars 3.0K Forks Apache License 2.0 2.3K Commits 146 Opened issues

Description

🏊🏾 Simplified HTTP request client.

Services available

!
?

Need anything else?

Contributors list

No Data

Deprecated!

As of Feb 11th 2020, request is fully deprecated. No new changes are expected to land. In fact, none have landed for some time.

For more information about why request is deprecated and possible alternatives refer to this issue.

Request - Simplified HTTP client

npm package

Build status Coverage Coverage Dependency Status Known Vulnerabilities Gitter

Super simple to use

Request is designed to be the simplest way possible to make http calls. It supports HTTPS and follows redirects by default.

const request = require('request');
request('http://www.google.com', function (error, response, body) {
  console.error('error:', error); // Print the error if one occurred
  console.log('statusCode:', response && response.statusCode); // Print the response status code if a response was received
  console.log('body:', body); // Print the HTML for the Google homepage.
});

Table of contents

Request also offers convenience methods like

request.defaults
and
request.post
, and there are lots of usage examples and several debugging techniques.

Streaming

You can stream any response to a file stream.

request('http://google.com/doodle.png').pipe(fs.createWriteStream('doodle.png'))

You can also stream a file to a PUT or POST request. This method will also check the file extension against a mapping of file extensions to content-types (in this case

application/json
) and use the proper
content-type
in the PUT request (if the headers don’t already provide one).
fs.createReadStream('file.json').pipe(request.put('http://mysite.com/obj.json'))

Request can also

pipe
to itself. When doing so,
content-type
and
content-length
are preserved in the PUT headers.
request.get('http://google.com/img.png').pipe(request.put('http://mysite.com/img.png'))

Request emits a "response" event when a response is received. The

response
argument will be an instance of http.IncomingMessage.
request
  .get('http://google.com/img.png')
  .on('response', function(response) {
    console.log(response.statusCode) // 200
    console.log(response.headers['content-type']) // 'image/png'
  })
  .pipe(request.put('http://mysite.com/img.png'))

To easily handle errors when streaming requests, listen to the

error
event before piping:
request
  .get('http://mysite.com/doodle.png')
  .on('error', function(err) {
    console.error(err)
  })
  .pipe(fs.createWriteStream('doodle.png'))

Now let’s get fancy.

http.createServer(function (req, resp) {
  if (req.url === '/doodle.png') {
    if (req.method === 'PUT') {
      req.pipe(request.put('http://mysite.com/doodle.png'))
    } else if (req.method === 'GET' || req.method === 'HEAD') {
      request.get('http://mysite.com/doodle.png').pipe(resp)
    }
  }
})

You can also

pipe()
from
http.ServerRequest
instances, as well as to
http.ServerResponse
instances. The HTTP method, headers, and entity-body data will be sent. Which means that, if you don't really care about security, you can do:
http.createServer(function (req, resp) {
  if (req.url === '/doodle.png') {
    const x = request('http://mysite.com/doodle.png')
    req.pipe(x)
    x.pipe(resp)
  }
})

And since

pipe()
returns the destination stream in ≥ Node 0.5.x you can do one line proxying. :)
req.pipe(request('http://mysite.com/doodle.png')).pipe(resp)

Also, none of this new functionality conflicts with requests previous features, it just expands them.

const r = request.defaults({'proxy':'http://localproxy.com'})

http.createServer(function (req, resp) { if (req.url === '/doodle.png') { r.get('http://google.com/doodle.png').pipe(resp) } })

You can still use intermediate proxies, the requests will still follow HTTP forwards, etc.

back to top


Promises & Async/Await

request
supports both streaming and callback interfaces natively. If you'd like
request
to return a Promise instead, you can use an alternative interface wrapper for
request
. These wrappers can be useful if you prefer to work with Promises, or if you'd like to use
async
/
await
in ES2017.

Several alternative interfaces are provided by the request team, including: -

request-promise
(uses Bluebird Promises) -
request-promise-native
(uses native Promises) -
request-promise-any
(uses any-promise Promises)

Also,

util.promisify
, which is available from Node.js v8.0 can be used to convert a regular function that takes a callback to return a promise instead.

back to top


Forms

request
supports
application/x-www-form-urlencoded
and
multipart/form-data
form uploads. For
multipart/related
refer to the
multipart
API.

application/x-www-form-urlencoded (URL-Encoded Forms)

URL-encoded forms are simple.

request.post('http://service.com/upload', {form:{key:'value'}})
// or
request.post('http://service.com/upload').form({key:'value'})
// or
request.post({url:'http://service.com/upload', form: {key:'value'}}, function(err,httpResponse,body){ /* ... */ })

multipart/form-data (Multipart Form Uploads)

For

multipart/form-data
we use the form-data library by @felixge. For the most cases, you can pass your upload form data via the
formData
option.
const formData = {
  // Pass a simple key-value pair
  my_field: 'my_value',
  // Pass data via Buffers
  my_buffer: Buffer.from([1, 2, 3]),
  // Pass data via Streams
  my_file: fs.createReadStream(__dirname + '/unicycle.jpg'),
  // Pass multiple values /w an Array
  attachments: [
    fs.createReadStream(__dirname + '/attachment1.jpg'),
    fs.createReadStream(__dirname + '/attachment2.jpg')
  ],
  // Pass optional meta-data with an 'options' object with style: {value: DATA, options: OPTIONS}
  // Use case: for some types of streams, you'll need to provide "file"-related information manually.
  // See the `form-data` README for more information about options: https://github.com/form-data/form-data
  custom_file: {
    value:  fs.createReadStream('/dev/urandom'),
    options: {
      filename: 'topsecret.jpg',
      contentType: 'image/jpeg'
    }
  }
};
request.post({url:'http://service.com/upload', formData: formData}, function optionalCallback(err, httpResponse, body) {
  if (err) {
    return console.error('upload failed:', err);
  }
  console.log('Upload successful!  Server responded with:', body);
});

For advanced cases, you can access the form-data object itself via

r.form()
. This can be modified until the request is fired on the next cycle of the event-loop. (Note that this calling
form()
will clear the currently set form data for that request.)
// NOTE: Advanced use-case, for normal use see 'formData' usage above
const r = request.post('http://service.com/upload', function optionalCallback(err, httpResponse, body) {...})
const form = r.form();
form.append('my_field', 'my_value');
form.append('my_buffer', Buffer.from([1, 2, 3]));
form.append('custom_file', fs.createReadStream(__dirname + '/unicycle.jpg'), {filename: 'unicycle.jpg'});

See the form-data README for more information & examples.

multipart/related

Some variations in different HTTP implementations require a newline/CRLF before, after, or both before and after the boundary of a

multipart/related
request (using the multipart option). This has been observed in the .NET WebAPI version 4.0. You can turn on a boundary preambleCRLF or postamble by passing them as
true
to your request options.
  request({
    method: 'PUT',
    preambleCRLF: true,
    postambleCRLF: true,
    uri: 'http://service.com/upload',
    multipart: [
      {
        'content-type': 'application/json',
        body: JSON.stringify({foo: 'bar', _attachments: {'message.txt': {follows: true, length: 18, 'content_type': 'text/plain' }}})
      },
      { body: 'I am an attachment' },
      { body: fs.createReadStream('image.png') }
    ],
    // alternatively pass an object containing additional options
    multipart: {
      chunked: false,
      data: [
        {
          'content-type': 'application/json',
          body: JSON.stringify({foo: 'bar', _attachments: {'message.txt': {follows: true, length: 18, 'content_type': 'text/plain' }}})
        },
        { body: 'I am an attachment' }
      ]
    }
  },
  function (error, response, body) {
    if (error) {
      return console.error('upload failed:', error);
    }
    console.log('Upload successful!  Server responded with:', body);
  })

back to top


HTTP Authentication

request.get('http://some.server.com/').auth('username', 'password', false);
// or
request.get('http://some.server.com/', {
  'auth': {
    'user': 'username',
    'pass': 'password',
    'sendImmediately': false
  }
});
// or
request.get('http://some.server.com/').auth(null, null, true, 'bearerToken');
// or
request.get('http://some.server.com/', {
  'auth': {
    'bearer': 'bearerToken'
  }
});

If passed as an option,

auth
should be a hash containing values:
  • user
    ||
    username
  • pass
    ||
    password
  • sendImmediately
    (optional)
  • bearer
    (optional)

The method form takes parameters

auth(username, password, sendImmediately, bearer)
.

sendImmediately
defaults to
true
, which causes a basic or bearer authentication header to be sent. If
sendImmediately
is
false
, then
request
will retry with a proper authentication header after receiving a
401
response from the server (which must contain a
WWW-Authenticate
header indicating the required authentication method).

Note that you can also specify basic authentication using the URL itself, as detailed in RFC 1738. Simply pass the

user:password
before the host with an
@
sign:
const username = 'username',
    password = 'password',
    url = 'http://' + username + ':' + password + '@some.server.com';

request({url}, function (error, response, body) { // Do more stuff with 'body' here });

Digest authentication is supported, but it only works with

sendImmediately
set to
false
; otherwise
request
will send basic authentication on the initial request, which will probably cause the request to fail.

Bearer authentication is supported, and is activated when the

bearer
value is available. The value may be either a
String
or a
Function
returning a
String
. Using a function to supply the bearer token is particularly useful if used in conjunction with
defaults
to allow a single function to supply the last known token at the time of sending a request, or to compute one on the fly.

back to top


Custom HTTP Headers

HTTP Headers, such as

User-Agent
, can be set in the
options
object. In the example below, we call the github API to find out the number of stars and forks for the request repository. This requires a custom
User-Agent
header as well as https.
const request = require('request');

const options = { url: 'https://api.github.com/repos/request/request', headers: { 'User-Agent': 'request' } };

function callback(error, response, body) { if (!error && response.statusCode == 200) { const info = JSON.parse(body); console.log(info.stargazers_count + " Stars"); console.log(info.forks_count + " Forks"); } }

request(options, callback);

back to top


OAuth Signing

OAuth version 1.0 is supported. The default signing algorithm is HMAC-SHA1:

// OAuth1.0 - 3-legged server side flow (Twitter example)
// step 1
const qs = require('querystring')
  , oauth =
    { callback: 'http://mysite.com/callback/'
    , consumer_key: CONSUMER_KEY
    , consumer_secret: CONSUMER_SECRET
    }
  , url = 'https://api.twitter.com/oauth/request_token'
  ;
request.post({url:url, oauth:oauth}, function (e, r, body) {
  // Ideally, you would take the body in the response
  // and construct a URL that a user clicks on (like a sign in button).
  // The verifier is only available in the response after a user has
  // verified with twitter that they are authorizing your app.

// step 2 const req_data = qs.parse(body) const uri = 'https://api.twitter.com/oauth/authenticate' + '?' + qs.stringify({oauth_token: req_data.oauth_token}) // redirect the user to the authorize uri

// step 3 // after the user is redirected back to your server const auth_data = qs.parse(body) , oauth = { consumer_key: CONSUMER_KEY , consumer_secret: CONSUMER_SECRET , token: auth_data.oauth_token , token_secret: req_data.oauth_token_secret , verifier: auth_data.oauth_verifier } , url = 'https://api.twitter.com/oauth/access_token' ; request.post({url:url, oauth:oauth}, function (e, r, body) { // ready to make signed requests on behalf of the user const perm_data = qs.parse(body) , oauth = { consumer_key: CONSUMER_KEY , consumer_secret: CONSUMER_SECRET , token: perm_data.oauth_token , token_secret: perm_data.oauth_token_secret } , url = 'https://api.twitter.com/1.1/users/show.json' , qs = { screen_name: perm_data.screen_name , user_id: perm_data.user_id } ; request.get({url:url, oauth:oauth, qs:qs, json:true}, function (e, r, user) { console.log(user) }) }) })

For RSA-SHA1 signing, make the following changes to the OAuth options object: * Pass

signature_method : 'RSA-SHA1'
* Instead of
consumer_secret
, specify a
private_key
string in PEM format

For PLAINTEXT signing, make the following changes to the OAuth options object: * Pass

signature_method : 'PLAINTEXT'

To send OAuth parameters via query params or in a post body as described in The Consumer Request Parameters section of the oauth1 spec: * Pass

transport_method : 'query'
or
transport_method : 'body'
in the OAuth options object. *
transport_method
defaults to
'header'

To use Request Body Hash you can either * Manually generate the body hash and pass it as a string

body_hash: '...'
* Automatically generate the body hash by passing
body_hash: true

back to top


Proxies

If you specify a

proxy
option, then the request (and any subsequent redirects) will be sent via a connection to the proxy server.

If your endpoint is an

https
url, and you are using a proxy, then request will send a
CONNECT
request to the proxy server first, and then use the supplied connection to connect to the endpoint.

That is, first it will make a request like:

HTTP/1.1 CONNECT endpoint-server.com:80
Host: proxy-server.com
User-Agent: whatever user agent you specify

and then the proxy server make a TCP connection to

endpoint-server
on port
80
, and return a response that looks like:
HTTP/1.1 200 OK

At this point, the connection is left open, and the client is communicating directly with the

endpoint-server.com
machine.

See the wikipedia page on HTTP Tunneling for more information.

By default, when proxying

http
traffic, request will simply make a standard proxied
http
request. This is done by making the
url
section of the initial line of the request a fully qualified url to the endpoint.

For example, it will make a single request that looks like:

HTTP/1.1 GET http://endpoint-server.com/some-url
Host: proxy-server.com
Other-Headers: all go here

request body or whatever

Because a pure "http over http" tunnel offers no additional security or other features, it is generally simpler to go with a straightforward HTTP proxy in this case. However, if you would like to force a tunneling proxy, you may set the

tunnel
option to
true
.

You can also make a standard proxied

http
request by explicitly setting
tunnel : false
, but note that this will allow the proxy to see the traffic to/from the destination server.

If you are using a tunneling proxy, you may set the

proxyHeaderWhiteList
to share certain headers with the proxy.

You can also set the

proxyHeaderExclusiveList
to share certain headers only with the proxy and not with destination host.

By default, this set is:

accept
accept-charset
accept-encoding
accept-language
accept-ranges
cache-control
content-encoding
content-language
content-length
content-location
content-md5
content-range
content-type
connection
date
expect
max-forwards
pragma
proxy-authorization
referer
te
transfer-encoding
user-agent
via

Note that, when using a tunneling proxy, the

proxy-authorization
header and any headers from custom
proxyHeaderExclusiveList
are never sent to the endpoint server, but only to the proxy server.

Controlling proxy behaviour using environment variables

The following environment variables are respected by

request
:
  • HTTP_PROXY
    /
    http_proxy
  • HTTPS_PROXY
    /
    https_proxy
  • NO_PROXY
    /
    no_proxy

When

HTTP_PROXY
/
http_proxy
are set, they will be used to proxy non-SSL requests that do not have an explicit
proxy
configuration option present. Similarly,
HTTPS_PROXY
/
https_proxy
will be respected for SSL requests that do not have an explicit
proxy
configuration option. It is valid to define a proxy in one of the environment variables, but then override it for a specific request, using the
proxy
configuration option. Furthermore, the
proxy
configuration option can be explicitly set to false / null to opt out of proxying altogether for that request.

request
is also aware of the
NO_PROXY
/
no_proxy
environment variables. These variables provide a granular way to opt out of proxying, on a per-host basis. It should contain a comma separated list of hosts to opt out of proxying. It is also possible to opt of proxying when a particular destination port is used. Finally, the variable may be set to
*
to opt out of the implicit proxy configuration of the other environment variables.

Here's some examples of valid

no_proxy
values:
  • google.com
    - don't proxy HTTP/HTTPS requests to Google.
  • google.com:443
    - don't proxy HTTPS requests to Google, but do proxy HTTP requests to Google.
  • google.com:443, yahoo.com:80
    - don't proxy HTTPS requests to Google, and don't proxy HTTP requests to Yahoo!
  • *
    - ignore
    https_proxy
    /
    http_proxy
    environment variables altogether.

back to top


UNIX Domain Sockets

request
supports making requests to UNIX Domain Sockets. To make one, use the following URL scheme:
/* Pattern */ 'http://unix:SOCKET:PATH'
/* Example */ request.get('http://unix:/absolute/path/to/unix.socket:/request/path')

Note: The

SOCKET
path is assumed to be absolute to the root of the host file system.

back to top


TLS/SSL Protocol

TLS/SSL Protocol options, such as

cert
,
key
and
passphrase
, can be set directly in
options
object, in the
agentOptions
property of the
options
object, or even in
https.globalAgent.options
. Keep in mind that, although
agentOptions
allows for a slightly wider range of configurations, the recommended way is via
options
object directly, as using
agentOptions
or
https.globalAgent.options
would not be applied in the same way in proxied environments (as data travels through a TLS connection instead of an http/https agent).
const fs = require('fs')
    , path = require('path')
    , certFile = path.resolve(__dirname, 'ssl/client.crt')
    , keyFile = path.resolve(__dirname, 'ssl/client.key')
    , caFile = path.resolve(__dirname, 'ssl/ca.cert.pem')
    , request = require('request');

const options = { url: 'https://api.some-server.com/', cert: fs.readFileSync(certFile), key: fs.readFileSync(keyFile), passphrase: 'password', ca: fs.readFileSync(caFile) };

request.get(options);

Using
options.agentOptions

In the example below, we call an API that requires client side SSL certificate (in PEM format) with passphrase protected private key (in PEM format) and disable the SSLv3 protocol:

const fs = require('fs')
    , path = require('path')
    , certFile = path.resolve(__dirname, 'ssl/client.crt')
    , keyFile = path.resolve(__dirname, 'ssl/client.key')
    , request = require('request');

const options = { url: 'https://api.some-server.com/', agentOptions: { cert: fs.readFileSync(certFile), key: fs.readFileSync(keyFile), // Or use pfx property replacing cert and key when using private key, certificate and CA certs in PFX or PKCS12 format: // pfx: fs.readFileSync(pfxFilePath), passphrase: 'password', securityOptions: 'SSL_OP_NO_SSLv3' } };

request.get(options);

It is able to force using SSLv3 only by specifying

secureProtocol
:
request.get({
    url: 'https://api.some-server.com/',
    agentOptions: {
        secureProtocol: 'SSLv3_method'
    }
});

It is possible to accept other certificates than those signed by generally allowed Certificate Authorities (CAs). This can be useful, for example, when using self-signed certificates. To require a different root certificate, you can specify the signing CA by adding the contents of the CA's certificate file to the

agentOptions
. The certificate the domain presents must be signed by the root certificate specified:
request.get({
    url: 'https://api.some-server.com/',
    agentOptions: {
        ca: fs.readFileSync('ca.cert.pem')
    }
});

The

ca
value can be an array of certificates, in the event you have a private or internal corporate public-key infrastructure hierarchy. For example, if you want to connect to https://api.some-server.com which presents a key chain consisting of: 1. its own public key, which is signed by: 2. an intermediate "Corp Issuing Server", that is in turn signed by: 3. a root CA "Corp Root CA";

you can configure your request as follows:

request.get({
    url: 'https://api.some-server.com/',
    agentOptions: {
        ca: [
          fs.readFileSync('Corp Issuing Server.pem'),
          fs.readFileSync('Corp Root CA.pem')
        ]
    }
});

back to top


Support for HAR 1.2

The

options.har
property will override the values:
url
,
method
,
qs
,
headers
,
form
,
formData
,
body
,
json
, as well as construct multipart data and read files from disk when
request.postData.params[].fileName
is present without a matching
value
.

A validation step will check if the HAR Request format matches the latest spec (v1.2) and will skip parsing if not matching.

  const request = require('request')
  request({
    // will be ignored
    method: 'GET',
    uri: 'http://www.google.com',

// HTTP Archive Request Object
har: {
  url: 'http://www.mockbin.com/har',
  method: 'POST',
  headers: [
    {
      name: 'content-type',
      value: 'application/x-www-form-urlencoded'
    }
  ],
  postData: {
    mimeType: 'application/x-www-form-urlencoded',
    params: [
      {
        name: 'foo',
        value: 'bar'
      },
      {
        name: 'hello',
        value: 'world'
      }
    ]
  }
}

})

// a POST request will be sent to http://www.mockbin.com // with body an application/x-www-form-urlencoded body: // foo=bar&hello=world

back to top


request(options, callback)

The first argument can be either a

url
or an
options
object. The only required option is
uri
; all others are optional.
  • uri
    ||
    url
    - fully qualified uri or a parsed url object from
    url.parse()
  • baseUrl
    - fully qualified uri string used as the base url. Most useful with
    request.defaults
    , for example when you want to do many requests to the same domain. If
    baseUrl
    is
    https://example.com/api/
    , then requesting
    /end/point?test=true
    will fetch
    https://example.com/api/end/point?test=true
    . When
    baseUrl
    is given,
    uri
    must also be a string.
  • method
    - http method (default:
    "GET"
    )
  • headers
    - http headers (default:
    {}
    )

  • qs
    - object containing querystring values to be appended to the
    uri
  • qsParseOptions
    - object containing options to pass to the qs.parse method. Alternatively pass options to the querystring.parse method using this format
    {sep:';', eq:':', options:{}}
  • qsStringifyOptions
    - object containing options to pass to the qs.stringify method. Alternatively pass options to the querystring.stringify method using this format
    {sep:';', eq:':', options:{}}
    . For example, to change the way arrays are converted to query strings using the
    qs
    module pass the
    arrayFormat
    option with one of
    indices|brackets|repeat
  • useQuerystring
    - if true, use
    querystring
    to stringify and parse querystrings, otherwise use
    qs
    (default:
    false
    ). Set this option to
    true
    if you need arrays to be serialized as
    foo=bar&foo=baz
    instead of the default
    foo[0]=bar&foo[1]=baz
    .

  • body
    - entity body for PATCH, POST and PUT requests. Must be a
    Buffer
    ,
    String
    or
    ReadStream
    . If
    json
    is
    true
    , then
    body
    must be a JSON-serializable object.
  • form
    - when passed an object or a querystring, this sets
    body
    to a querystring representation of value, and adds
    Content-type: application/x-www-form-urlencoded
    header. When passed no options, a
    FormData
    instance is returned (and is piped to request). See "Forms" section above.
  • formData
    - data to pass for a
    multipart/form-data
    request. See Forms section above.
  • multipart
    - array of objects which contain their own headers and
    body
    attributes. Sends a
    multipart/related
    request. See Forms section above.
    • Alternatively you can pass in an object
      {chunked: false, data: []}
      where
      chunked
      is used to specify whether the request is sent in chunked transfer encoding In non-chunked requests, data items with body streams are not allowed.
  • preambleCRLF
    - append a newline/CRLF before the boundary of your
    multipart/form-data
    request.
  • postambleCRLF
    - append a newline/CRLF at the end of the boundary of your
    multipart/form-data
    request.
  • json
    - sets
    body
    to JSON representation of value and adds
    Content-type: application/json
    header. Additionally, parses the response body as JSON.
  • jsonReviver
    - a reviver function that will be passed to
    JSON.parse()
    when parsing a JSON response body.
  • jsonReplacer
    - a replacer function that will be passed to
    JSON.stringify()
    when stringifying a JSON request body.

  • auth
    - a hash containing values
    user
    ||
    username
    ,
    pass
    ||
    password
    , and
    sendImmediately
    (optional). See documentation above.
  • oauth
    - options for OAuth HMAC-SHA1 signing. See documentation above.
  • hawk
    - options for Hawk signing. The
    credentials
    key must contain the necessary signing info, see hawk docs for details.
  • aws
    -
    object
    containing AWS signing information. Should have the properties
    key
    ,
    secret
    , and optionally
    session
    (note that this only works for services that require session as part of the canonical string). Also requires the property
    bucket
    , unless you’re specifying your
    bucket
    as part of the path, or the request doesn’t use a bucket (i.e. GET Services). If you want to use AWS sign version 4 use the parameter
    sign_version
    with value
    4
    otherwise the default is version 2. If you are using SigV4, you can also include a
    service
    property that specifies the service name. Note: you need to
    npm install aws4
    first.
  • httpSignature
    - options for the HTTP Signature Scheme using Joyent's library. The
    keyId
    and
    key
    properties must be specified. See the docs for other options.

  • followRedirect
    - follow HTTP 3xx responses as redirects (default:
    true
    ). This property can also be implemented as function which gets
    response
    object as a single argument and should return
    true
    if redirects should continue or
    false
    otherwise.
  • followAllRedirects
    - follow non-GET HTTP 3xx responses as redirects (default:
    false
    )
  • followOriginalHttpMethod
    - by default we redirect to HTTP method GET. you can enable this property to redirect to the original HTTP method (default:
    false
    )
  • maxRedirects
    - the maximum number of redirects to follow (default:
    10
    )
  • removeRefererHeader
    - removes the referer header when a redirect happens (default:
    false
    ). Note: if true, referer header set in the initial request is preserved during redirect chain.

  • encoding
    - encoding to be used on
    setEncoding
    of response data. If
    null
    , the
    body
    is returned as a
    Buffer
    . Anything else (including the default value of
    undefined
    )
    will be passed as the encoding parameter to
    toString()
    (meaning this is effectively
    utf8
    by default). (Note: if you expect binary data, you should set
    encoding: null
    .)
  • gzip
    - if
    true
    , add an
    Accept-Encoding
    header to request compressed content encodings from the server (if not already present) and decode supported content encodings in the response. Note: Automatic decoding of the response content is performed on the body data returned through
    request
    (both through the
    request
    stream and passed to the callback function) but is not performed on the
    response
    stream (available from the
    response
    event) which is the unmodified
    http.IncomingMessage
    object which may contain compressed data. See example below.
  • jar
    - if
    true
    , remember cookies for future use (or define your custom cookie jar; see examples section)

  • agent
    -
    http(s).Agent
    instance to use
  • agentClass
    - alternatively specify your agent's class name
  • agentOptions
    - and pass its options. Note: for HTTPS see tls API doc for TLS/SSL options and the documentation above.
  • forever
    - set to
    true
    to use the forever-agent Note: Defaults to
    http(s).Agent({keepAlive:true})
    in node 0.12+
  • pool
    - an object describing which agents to use for the request. If this option is omitted the request will use the global agent (as long as your options allow for it). Otherwise, request will search the pool for your custom agent. If no custom agent is found, a new agent will be created and added to the pool. Note:
    pool
    is used only when the
    agent
    option is not specified.
    • A
      maxSockets
      property can also be provided on the
      pool
      object to set the max number of sockets for all agents created (ex:
      pool: {maxSockets: Infinity}
      ).
    • Note that if you are sending multiple requests in a loop and creating multiple new
      pool
      objects,
      maxSockets
      will not work as intended. To work around this, either use
      request.defaults
      with your pool options or create the pool object with the
      maxSockets
      property outside of the loop.
  • timeout
    - integer containing number of milliseconds, controls two timeouts.
    • Read timeout: Time to wait for a server to send response headers (and start the response body) before aborting the request.
    • Connection timeout: Sets the socket to timeout after
      timeout
      milliseconds of inactivity. Note that increasing the timeout beyond the OS-wide TCP connection timeout will not have any effect (the default in Linux can be anywhere from 20-120 seconds)

  • localAddress
    - local interface to bind for network connections.
  • proxy
    - an HTTP proxy to be used. Supports proxy Auth with Basic Auth, identical to support for the
    url
    parameter (by embedding the auth info in the
    uri
    )
  • strictSSL
    - if
    true
    , requires SSL certificates be valid. Note: to use your own certificate authority, you need to specify an agent that was created with that CA as an option.
  • tunnel
    - controls the behavior of HTTP
    CONNECT
    tunneling
    as follows:
    • undefined
      (default) -
      true
      if the destination is
      https
      ,
      false
      otherwise
    • true
      - always tunnel to the destination by making a
      CONNECT
      request to the proxy
    • false
      - request the destination as a
      GET
      request.
  • proxyHeaderWhiteList
    - a whitelist of headers to send to a tunneling proxy.
  • proxyHeaderExclusiveList
    - a whitelist of headers to send exclusively to a tunneling proxy and not to destination.

  • time
    - if
    true
    , the request-response cycle (including all redirects) is timed at millisecond resolution. When set, the following properties are added to the response object:
    • elapsedTime
      Duration of the entire request/response in milliseconds (deprecated).
    • responseStartTime
      Timestamp when the response began (in Unix Epoch milliseconds) (deprecated).
    • timingStart
      Timestamp of the start of the request (in Unix Epoch milliseconds).
    • timings
      Contains event timestamps in millisecond resolution relative to
      timingStart
      . If there were redirects, the properties reflect the timings of the final request in the redirect chain:
    • socket
      Relative timestamp when the
      http
      module's
      socket
      event fires. This happens when the socket is assigned to the request.
    • lookup
      Relative timestamp when the
      net
      module's
      lookup
      event fires. This happens when the DNS has been resolved.
    • connect
      : Relative timestamp when the
      net
      module's
      connect
      event fires. This happens when the server acknowledges the TCP connection.
    • response
      : Relative timestamp when the
      http
      module's
      response
      event fires. This happens when the first bytes are received from the server.
    • end
      : Relative timestamp when the last bytes of the response are received.
    • timingPhases
      Contains the durations of each request phase. If there were redirects, the properties reflect the timings of the final request in the redirect chain:
    • wait
      : Duration of socket initialization (
      timings.socket
      )
    • dns
      : Duration of DNS lookup (
      timings.lookup
      -
      timings.socket
      )
    • tcp
      : Duration of TCP connection (
      timings.connect
      -
      timings.socket
      )
    • firstByte
      : Duration of HTTP server response (
      timings.response
      -
      timings.connect
      )
    • download
      : Duration of HTTP download (
      timings.end
      -
      timings.response
      )
    • total
      : Duration entire HTTP round-trip (
      timings.end
      )
  • har
    - a HAR 1.2 Request Object, will be processed from HAR format into options overwriting matching values (see the HAR 1.2 section for details)
  • callback
    - alternatively pass the request's callback in the options object

The callback argument gets 3 arguments:

  1. An
    error
    when applicable (usually from
    http.ClientRequest
    object)
  2. An
    http.IncomingMessage
    object (Response object)
  3. The third is the
    response
    body (
    String
    or
    Buffer
    , or JSON object if the
    json
    option is supplied)

back to top


Convenience methods

There are also shorthand methods for different HTTP METHODs and some other conveniences.

request.defaults(options)

This method returns a wrapper around the normal request API that defaults to whatever options you pass to it.

Note:

request.defaults()
does not modify the global request API; instead, it returns a wrapper that has your default settings applied to it.

Note: You can call

.defaults()
on the wrapper that is returned from
request.defaults
to add/override defaults that were previously defaulted.

For example: ```js //requests using baseRequest() will set the 'x-token' header const baseRequest = request.defaults({ headers: {'x-token': 'my-token'} })

//requests using specialRequest() will include the 'x-token' header set in //baseRequest and will also include the 'special' header const specialRequest = baseRequest.defaults({ headers: {special: 'special value'} }) ```

request.METHOD()

These HTTP method convenience functions act just like

request()
but with a default method already set for you:
  • request.get(): Defaults to
    method: "GET"
    .
  • request.post(): Defaults to
    method: "POST"
    .
  • request.put(): Defaults to
    method: "PUT"
    .
  • request.patch(): Defaults to
    method: "PATCH"
    .
  • request.del() / request.delete(): Defaults to
    method: "DELETE"
    .
  • request.head(): Defaults to
    method: "HEAD"
    .
  • request.options(): Defaults to
    method: "OPTIONS"
    .

request.cookie()

Function that creates a new cookie.

request.cookie('key1=value1')

request.jar()

Function that creates a new cookie jar.

request.jar()

response.caseless.get('header-name')

Function that returns the specified response header field using a case-insensitive match

request('http://www.google.com', function (error, response, body) {
  // print the Content-Type header even if the server returned it as 'content-type' (lowercase)
  console.log('Content-Type is:', response.caseless.get('Content-Type')); 
});

back to top


Debugging

There are at least three ways to debug the operation of

request
:
  1. Launch the node process like

    NODE_DEBUG=request node script.js
    (
    lib,request,otherlib
    works too).
  2. Set

    require('request').debug = true
    at any time (this does the same thing as #1).
  3. Use the request-debug module to view request and response headers and bodies.

back to top


Timeouts

Most requests to external servers should have a timeout attached, in case the server is not responding in a timely manner. Without a timeout, your code may have a socket open/consume resources for minutes or more.

There are two main types of timeouts: connection timeouts and read timeouts. A connect timeout occurs if the timeout is hit while your client is attempting to establish a connection to a remote machine (corresponding to the connect() call on the socket). A read timeout occurs any time the server is too slow to send back a part of the response.

These two situations have widely different implications for what went wrong with the request, so it's useful to be able to distinguish them. You can detect timeout errors by checking

err.code
for an 'ETIMEDOUT' value. Further, you can detect whether the timeout was a connection timeout by checking if the
err.connect
property is set to
true
.
request.get('http://10.255.255.1', {timeout: 1500}, function(err) {
    console.log(err.code === 'ETIMEDOUT');
    // Set to `true` if the timeout was a connection timeout, `false` or
    // `undefined` otherwise.
    console.log(err.connect === true);
    process.exit(0);
});

Examples:

  const request = require('request')
    , rand = Math.floor(Math.random()*100000000).toString()
    ;
  request(
    { method: 'PUT'
    , uri: 'http://mikeal.iriscouch.com/testjs/' + rand
    , multipart:
      [ { 'content-type': 'application/json'
        ,  body: JSON.stringify({foo: 'bar', _attachments: {'message.txt': {follows: true, length: 18, 'content_type': 'text/plain' }}})
        }
      , { body: 'I am an attachment' }
      ]
    }
  , function (error, response, body) {
      if(response.statusCode == 201){
        console.log('document saved as: http://mikeal.iriscouch.com/testjs/'+ rand)
      } else {
        console.log('error: '+ response.statusCode)
        console.log(body)
      }
    }
  )

For backwards-compatibility, response compression is not supported by default. To accept gzip-compressed responses, set the

gzip
option to
true
. Note that the body data passed through
request
is automatically decompressed while the response object is unmodified and will contain compressed data if the server sent a compressed response.
  const request = require('request')
  request(
    { method: 'GET'
    , uri: 'http://www.google.com'
    , gzip: true
    }
  , function (error, response, body) {
      // body is the decompressed response body
      console.log('server encoded the data as: ' + (response.headers['content-encoding'] || 'identity'))
      console.log('the decoded data is: ' + body)
    }
  )
  .on('data', function(data) {
    // decompressed data as it is received
    console.log('decoded chunk: ' + data)
  })
  .on('response', function(response) {
    // unmodified http.IncomingMessage object
    response.on('data', function(data) {
      // compressed data as it is received
      console.log('received ' + data.length + ' bytes of compressed data')
    })
  })

Cookies are disabled by default (else, they would be used in subsequent requests). To enable cookies, set

jar
to
true
(either in
defaults
or
options
).
const request = request.defaults({jar: true})
request('http://www.google.com', function () {
  request('http://images.google.com')
})

To use a custom cookie jar (instead of

request
’s global cookie jar), set
jar
to an instance of
request.jar()
(either in
defaults
or
options
)
const j = request.jar()
const request = request.defaults({jar:j})
request('http://www.google.com', function () {
  request('http://images.google.com')
})

OR

const j = request.jar();
const cookie = request.cookie('key1=value1');
const url = 'http://www.google.com';
j.setCookie(cookie, url);
request({url: url, jar: j}, function () {
  request('http://images.google.com')
})

To use a custom cookie store (such as a

FileCookieStore
which supports saving to and restoring from JSON files), pass it as a parameter to

request.jar()
:
const FileCookieStore = require('tough-cookie-filestore');
// NOTE - currently the 'cookies.json' file must already exist!
const j = request.jar(new FileCookieStore('cookies.json'));
request = request.defaults({ jar : j })
request('http://www.google.com', function() {
  request('http://images.google.com')
})

The cookie store must be a

tough-cookie
store and it must support synchronous operations; see the
CookieStore
API docs
for details.

To inspect your cookie jar after a request:

const j = request.jar()
request({url: 'http://www.google.com', jar: j}, function () {
  const cookie_string = j.getCookieString(url); // "key1=value1; key2=value2; ..."
  const cookies = j.getCookies(url);
  // [{key: 'key1', value: 'value1', domain: "www.google.com", ...}, ...]
})

back to top

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.