Need help with pandas-profiling?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

7.1K Stars 1.1K Forks MIT License 807 Commits 81 Opened issues


Create HTML profiling reports from pandas DataFrame objects

Services available


Need anything else?

Contributors list

Pandas Profiling

Pandas Profiling Logo Header

Build Status Code Coverage Release Version Python Version Code style: black

Documentation | Slack | Stack Overflow

Generates profile reports from a pandas


The pandas

function is great but a little basic for serious exploratory data analysis.
extends the pandas DataFrame with
for quick data analysis.

For each column the following statistics - if relevant for the column type - are presented in an interactive HTML report:

  • Type inference: detect the types of columns in a dataframe.
  • Essentials: type, unique values, missing values
  • Quantile statistics like minimum value, Q1, median, Q3, maximum, range, interquartile range
  • Descriptive statistics like mean, mode, standard deviation, sum, median absolute deviation, coefficient of variation, kurtosis, skewness
  • Most frequent values
  • Histogram
  • Correlations highlighting of highly correlated variables, Spearman, Pearson and Kendall matrices
  • Missing values matrix, count, heatmap and dendrogram of missing values
  • Text analysis learn about categories (Uppercase, Space), scripts (Latin, Cyrillic) and blocks (ASCII) of text data.
  • File and Image analysis extract file sizes, creation dates and dimensions and scan for truncated images or those containing EXIF information.


Version v2.11.0 released featuring an exciting integration with Great Expectations that many of you requested (see details below).

Spark backend in progress: We can happily announce that we're nearing v1 for the Spark backend for generating profile reports. Stay tuned.


The development of

relies completely on contributions. If you find value in the package, we welcome you to support the project directly through GitHub Sponsors! Please help me to continue to support this package. It's extra exciting that GitHub matches your contribution for the first year.

Find more information here:

February 20, 2021 💘

Contents: Examples | Installation | Documentation | Large datasets | Command line usage | Advanced usage | integrations | Support | Types | How to contribute | Editor Integration | Dependencies


The following examples can give you an impression of what the package can do:

Specific features:



Using pip

PyPi Downloads PyPi Monthly Downloads PyPi Version

You can install using the pip package manager by running

pip install pandas-profiling[notebook]

Alternatively, you could install the latest version directly from Github:

pip install

Using conda

Conda Downloads Conda Version

You can install using the conda package manager by running

conda install -c conda-forge pandas-profiling

From source

Download the source code by cloning the repository or by pressing 'Download ZIP' on this page.

Install by navigating to the proper directory and running:

python install


The documentation for

can be found here. Previous documentation is still available here.

Getting started

Start by loading in your pandas DataFrame, e.g. by using:

import numpy as np
import pandas as pd
from pandas_profiling import ProfileReport

df = pd.DataFrame( np.random.rand(100, 5), columns=["a", "b", "c", "d", "e"] )

To generate the report, run:

profile = ProfileReport(df, title="Pandas Profiling Report")

Explore deeper

You can configure the profile report in any way you like. The example code below loads the explorative configuration file, that includes many features for text (length distribution, unicode information), files (file size, creation time) and images (dimensions, exif information). If you are interested what exact settings were used, you can compare with the default configuration file.

profile = ProfileReport(df, title='Pandas Profiling Report', explorative=True)

Learn more about configuring

on the Advanced usage page.

Jupyter Notebook

We recommend generating reports interactively by using the Jupyter notebook. There are two interfaces (see animations below): through widgets and through a HTML report.

Notebook Widgets

This is achieved by simply displaying the report. In the Jupyter Notebook, run:


The HTML report can be included in a Jupyter notebook:


Run the following code:


Saving the report

If you want to generate a HTML report file, save the

to an object and use the

Alternatively, you can obtain the data as JSON: ```python

As a string

jsondata = profile.tojson()

As a file

profile.tofile("yourreport.json") ```

Large datasets

Version 2.4 introduces minimal mode.

This is a default configuration that disables expensive computations (such as correlations and duplicate row detection).

Use the following syntax:

profile = ProfileReport(large_dataset, minimal=True)

Benchmarks are available here.

Command line usage

For standard formatted CSV files that can be read immediately by pandas, you can use the


Run the following for information about options and arguments.

pandas_profiling -h

Advanced usage

A set of options is available in order to adapt the report generated.

  • title
    ): Title for the report ('Pandas Profiling Report' by default).
  • pool_size
    ): Number of workers in thread pool. When set to zero, it is set to the number of CPUs available (0 by default).
  • progress_bar
    ): If True,
    will display a progress bar.
  • infer_dtypes
    ): When
    (default) the
    of variables are inferred using
    using the typeset logic (for instance a column that has integers stored as string will be analyzed as if being numeric).

More settings can be found in the default configuration file and minimal configuration file.

You find the configuration docs on the advanced usage page here


profile = df.profile_report(title='Pandas Profiling Report', plot={'histogram': {'bins': 8}})


Great Expectations

Great Expectations

Profiling your data is closely related to data validation: often validation rules are defined in terms of well-known statistics. For that purpose, pandas-profiling integrates with Great Expectations. This a world-class open-source library that helps you to maintain data quality and improve communication about data between teams. Great Expectations allows you to create Expectations (which are basically unit tests for your data) and Data Docs (conveniently shareable HTML data reports). pandas-profiling features a method to create a suite of Expectations based on the results of your ProfileReport, which you can store, and use to validate another (or future) dataset.

You can find more details on the Great Expectations integration here

Supporting open source

Maintaining and developing the open-source code for pandas-profiling, with millions of downloads and thousands of users, would not be possible without support of our gracious sponsors.

Lambda Labs

Lambda workstations, servers, laptops, and cloud services power engineers and researchers at Fortune 500 companies and 94% of the top 50 universities. Lambda Cloud offers 4 & 8 GPU instances starting at $1.50 / hr. Pre-installed with TensorFlow, PyTorch, Ubuntu, CUDA, and cuDNN.

We would like to thank our generous Github Sponsors supporters who make pandas-profiling possible:

Martin Sotir, Brian Lee, Stephanie Rivera, abdulAziz, gramster

More info if you would like to appear here: Github Sponsor page


Types are a powerful abstraction for effective data analysis, that goes beyond the logical data types (integer, float etc.).

currently, recognizes the following types: Boolean, Numerical, Date, Categorical, URL, Path, File and Image.

We have developed a type system for Python, tailored for data analysis: visions. Choosing an appropriate typeset can both improve the overall expressiveness and reduce the complexity of your analysis/code. To learn more about

's type system, check out the default implementation here. In the meantime, user customized summarizations and type definitions are now fully supported - if you have a specific use-case please reach out with ideas or a PR!


Read on getting involved in the Contribution Guide.

A low threshold place to ask questions or start contributing is by reaching out on the pandas-profiling Slack. Join the Slack community.

Editor integration

PyCharm integration

  1. Install
    via the instructions above
  2. Locate your
    • On macOS / Linux / BSD:
      $ which pandas_profiling
      (example) /usr/local/bin/pandas_profiling
    • On Windows:
      $ where pandas_profiling
      (example) C:\ProgramData\Anaconda3\Scripts\pandas_profiling.exe
  3. In PyCharm, go to Settings (or Preferences on macOS) > Tools > External tools
  4. Click the + icon to add a new external tool
  5. Insert the following values
    • Name: Pandas Profiling
    • Program: The location obtained in step 2
    • Arguments:
      "$FilePath$" "$FileDir$/$FileNameWithoutAllExtensions$_report.html"
    • Working Directory:

PyCharm Integration

To use the PyCharm Integration, right click on any dataset file:

External Tools > Pandas Profiling.

Other integrations

Other editor integrations may be contributed via pull requests.


The profile report is written in HTML and CSS, which means

requires a modern browser.

You need Python 3 to run this package. Other dependencies can be found in the requirements files:

| Filename | Requirements| |----------|-------------| | requirements.txt | Package requirements| | requirements-dev.txt | Requirements for development| | requirements-test.txt | Requirements for testing| | | Requirements for Widgets etc. |

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.