Github url

Design-Patterns-In-Swift

by ochococo

πŸ“– Design Patterns implemented in Swift 5.0

12.0K Stars 1.4K Forks Last release: Not found GNU General Public License v3.0 152 Commits 0 Releases

Available items

No Items, yet!

The developer of this repository has not created any items for sale yet. Need a bug fixed? Help with integration? A different license? Create a request here:

Design Patterns implemented in Swift 5.0

A short cheat-sheet with Xcode 10.2 Playground (Design-Patterns.playground.zip).

πŸ‡¨πŸ‡³δΈ­ζ–‡η‰ˆ

πŸ‘· Project started by: @nsmeme (Oktawian Chojnacki)

πŸ‘· δΈ­ζ–‡η‰ˆη”± @binglogo (棒棒彬) 整理翻译。

πŸš€ How to generate README, Playground and zip from source: GENERATE.md

print("Welcome!")

Table of Contents

| Behavioral | Creational | Structural | | ------------------------------------------------------ | ---------------------------------------- | ---------------------------------------- | | 🐝 Chain Of Responsibility | 🌰 Abstract Factory | πŸ”Œ Adapter | | πŸ‘« Command | πŸ‘· Builder | πŸŒ‰ Bridge | | 🎢 Interpreter | 🏭 Factory Method | 🌿 Composite | | 🍫 Iterator | πŸƒ Prototype | 🍧 Decorator | | πŸ’ Mediator | πŸ’ Singleton | 🎁 FaΓ§ade | | πŸ’Ύ Memento | | πŸƒ Flyweight | | πŸ‘“ Observer | | β˜” Protection Proxy | | πŸ‰ State | | 🍬 Virtual Proxy | | πŸ’‘ Strategy | | | | πŸƒ Visitor | | |

Behavioral

In software engineering, behavioral design patterns are design patterns that identify common communication patterns between objects and realize these patterns. By doing so, these patterns increase flexibility in carrying out this communication.

Source: wikipedia.org

🐝 Chain Of Responsibility

The chain of responsibility pattern is used to process varied requests, each of which may be dealt with by a different handler.

Example:

protocol Withdrawing { func withdraw(amount: Int) -\> Bool } final class MoneyPile: Withdrawing { let value: Int var quantity: Int var next: Withdrawing? init(value: Int, quantity: Int, next: Withdrawing?) { self.value = value self.quantity = quantity self.next = next } func withdraw(amount: Int) -\> Bool { var amount = amount func canTakeSomeBill(want: Int) -\> Bool { return (want / self.value) \> 0 } var quantity = self.quantity while canTakeSomeBill(want: amount) { if quantity == 0 { break } amount -= self.value quantity -= 1 } guard amount \> 0 else { return true } if let next = self.next { return next.withdraw(amount: amount) } return false } } final class ATM: Withdrawing { private var hundred: Withdrawing private var fifty: Withdrawing private var twenty: Withdrawing private var ten: Withdrawing private var startPile: Withdrawing { return self.hundred } init(hundred: Withdrawing, fifty: Withdrawing, twenty: Withdrawing, ten: Withdrawing) { self.hundred = hundred self.fifty = fifty self.twenty = twenty self.ten = ten } func withdraw(amount: Int) -\> Bool { return startPile.withdraw(amount: amount) } }

Usage

// Create piles of money and link them together 10 \< 20 \< 50 \< 100.\*\* let ten = MoneyPile(value: 10, quantity: 6, next: nil) let twenty = MoneyPile(value: 20, quantity: 2, next: ten) let fifty = MoneyPile(value: 50, quantity: 2, next: twenty) let hundred = MoneyPile(value: 100, quantity: 1, next: fifty) // Build ATM. var atm = ATM(hundred: hundred, fifty: fifty, twenty: twenty, ten: ten) atm.withdraw(amount: 310) // Cannot because ATM has only 300 atm.withdraw(amount: 100) // Can withdraw - 1x100

πŸ‘« Command

The command pattern is used to express a request, including the call to be made and all of its required parameters, in a command object. The command may then be executed immediately or held for later use.

Example:

protocol DoorCommand { func execute() -\> String } final class OpenCommand: DoorCommand { let doors:String required init(doors: String) { self.doors = doors } func execute() -\> String { return "Opened \(doors)" } } final class CloseCommand: DoorCommand { let doors:String required init(doors: String) { self.doors = doors } func execute() -\> String { return "Closed \(doors)" } } final class HAL9000DoorsOperations { let openCommand: DoorCommand let closeCommand: DoorCommand init(doors: String) { self.openCommand = OpenCommand(doors:doors) self.closeCommand = CloseCommand(doors:doors) } func close() -\> String { return closeCommand.execute() } func open() -\> String { return openCommand.execute() } }

Usage:

let podBayDoors = "Pod Bay Doors" let doorModule = HAL9000DoorsOperations(doors:podBayDoors) doorModule.open() doorModule.close()

🎢 Interpreter

The interpreter pattern is used to evaluate sentences in a language.

Example

protocol IntegerExpression { func evaluate(\_ context: IntegerContext) -\> Int func replace(character: Character, integerExpression: IntegerExpression) -\> IntegerExpression func copied() -\> IntegerExpression } final class IntegerContext { private var data: [Character:Int] = [:] func lookup(name: Character) -\> Int { return self.data[name]! } func assign(expression: IntegerVariableExpression, value: Int) { self.data[expression.name] = value } } final class IntegerVariableExpression: IntegerExpression { let name: Character init(name: Character) { self.name = name } func evaluate(\_ context: IntegerContext) -\> Int { return context.lookup(name: self.name) } func replace(character name: Character, integerExpression: IntegerExpression) -\> IntegerExpression { if name == self.name { return integerExpression.copied() } else { return IntegerVariableExpression(name: self.name) } } func copied() -\> IntegerExpression { return IntegerVariableExpression(name: self.name) } } final class AddExpression: IntegerExpression { private var operand1: IntegerExpression private var operand2: IntegerExpression init(op1: IntegerExpression, op2: IntegerExpression) { self.operand1 = op1 self.operand2 = op2 } func evaluate(\_ context: IntegerContext) -\> Int { return self.operand1.evaluate(context) + self.operand2.evaluate(context) } func replace(character: Character, integerExpression: IntegerExpression) -\> IntegerExpression { return AddExpression(op1: operand1.replace(character: character, integerExpression: integerExpression), op2: operand2.replace(character: character, integerExpression: integerExpression)) } func copied() -\> IntegerExpression { return AddExpression(op1: self.operand1, op2: self.operand2) } }

Usage

var context = IntegerContext() var a = IntegerVariableExpression(name: "A") var b = IntegerVariableExpression(name: "B") var c = IntegerVariableExpression(name: "C") var expression = AddExpression(op1: a, op2: AddExpression(op1: b, op2: c)) // a + (b + c) context.assign(expression: a, value: 2) context.assign(expression: b, value: 1) context.assign(expression: c, value: 3) var result = expression.evaluate(context)

🍫 Iterator

The iterator pattern is used to provide a standard interface for traversing a collection of items in an aggregate object without the need to understand its underlying structure.

Example:

struct Novella { let name: String } struct Novellas { let novellas: [Novella] } struct NovellasIterator: IteratorProtocol { private var current = 0 private let novellas: [Novella] init(novellas: [Novella]) { self.novellas = novellas } mutating func next() -\> Novella? { defer { current += 1 } return novellas.count \> current ? novellas[current] : nil } } extension Novellas: Sequence { func makeIterator() -\> NovellasIterator { return NovellasIterator(novellas: novellas) } }

Usage

let greatNovellas = Novellas(novellas: [Novella(name: "The Mist")] ) for novella in greatNovellas { print("I've read: \(novella)") }

πŸ’ Mediator

The mediator pattern is used to reduce coupling between classes that communicate with each other. Instead of classes communicating directly, and thus requiring knowledge of their implementation, the classes send messages via a mediator object.

Example

protocol Receiver { associatedtype MessageType func receive(message: MessageType) } protocol Sender { associatedtype MessageType associatedtype ReceiverType: Receiver var recipients: [ReceiverType] { get } func send(message: MessageType) } struct Programmer: Receiver { let name: String init(name: String) { self.name = name } func receive(message: String) { print("\(name) received: \(message)") } } final class MessageMediator: Sender { internal var recipients: [Programmer] = [] func add(recipient: Programmer) { recipients.append(recipient) } func send(message: String) { for recipient in recipients { recipient.receive(message: message) } } }

Usage

func spamMonster(message: String, worker: MessageMediator) { worker.send(message: message) } let messagesMediator = MessageMediator() let user0 = Programmer(name: "Linus Torvalds") let user1 = Programmer(name: "Avadis 'Avie' Tevanian") messagesMediator.add(recipient: user0) messagesMediator.add(recipient: user1) spamMonster(message: "I'd Like to Add you to My Professional Network", worker: messagesMediator)

πŸ’Ύ Memento

The memento pattern is used to capture the current state of an object and store it in such a manner that it can be restored at a later time without breaking the rules of encapsulation.

Example

typealias Memento = [String: String]

Originator

protocol MementoConvertible { var memento: Memento { get } init?(memento: Memento) } struct GameState: MementoConvertible { private enum Keys { static let chapter = "com.valve.halflife.chapter" static let weapon = "com.valve.halflife.weapon" } var chapter: String var weapon: String init(chapter: String, weapon: String) { self.chapter = chapter self.weapon = weapon } init?(memento: Memento) { guard let mementoChapter = memento[Keys.chapter], let mementoWeapon = memento[Keys.weapon] else { return nil } chapter = mementoChapter weapon = mementoWeapon } var memento: Memento { return [Keys.chapter: chapter, Keys.weapon: weapon] } }

Caretaker

enum CheckPoint { private static let defaults = UserDefaults.standard static func save(\_ state: MementoConvertible, saveName: String) { defaults.set(state.memento, forKey: saveName) defaults.synchronize() } static func restore(saveName: String) -\> Any? { return defaults.object(forKey: saveName) } }

Usage

var gameState = GameState(chapter: "Black Mesa Inbound", weapon: "Crowbar") gameState.chapter = "Anomalous Materials" gameState.weapon = "Glock 17" CheckPoint.save(gameState, saveName: "gameState1") gameState.chapter = "Unforeseen Consequences" gameState.weapon = "MP5" CheckPoint.save(gameState, saveName: "gameState2") gameState.chapter = "Office Complex" gameState.weapon = "Crossbow" CheckPoint.save(gameState, saveName: "gameState3") if let memento = CheckPoint.restore(saveName: "gameState1") as? Memento { let finalState = GameState(memento: memento) dump(finalState) }

πŸ‘“ Observer

The observer pattern is used to allow an object to publish changes to its state. Other objects subscribe to be immediately notified of any changes.

Example

protocol PropertyObserver : class { func willChange(propertyName: String, newPropertyValue: Any?) func didChange(propertyName: String, oldPropertyValue: Any?) } final class TestChambers { weak var observer:PropertyObserver? private let testChamberNumberName = "testChamberNumber" var testChamberNumber: Int = 0 { willSet(newValue) { observer?.willChange(propertyName: testChamberNumberName, newPropertyValue: newValue) } didSet { observer?.didChange(propertyName: testChamberNumberName, oldPropertyValue: oldValue) } } } final class Observer : PropertyObserver { func willChange(propertyName: String, newPropertyValue: Any?) { if newPropertyValue as? Int == 1 { print("Okay. Look. We both said a lot of things that you're going to regret.") } } func didChange(propertyName: String, oldPropertyValue: Any?) { if oldPropertyValue as? Int == 0 { print("Sorry about the mess. I've really let the place go since you killed me.") } } }

Usage

var observerInstance = Observer() var testChambers = TestChambers() testChambers.observer = observerInstance testChambers.testChamberNumber += 1

πŸ‰ State

The state pattern is used to alter the behaviour of an object as its internal state changes. The pattern allows the class for an object to apparently change at run-time.

Example

final class Context { private var state: State = UnauthorizedState() var isAuthorized: Bool { get { return state.isAuthorized(context: self) } } var userId: String? { get { return state.userId(context: self) } } func changeStateToAuthorized(userId: String) { state = AuthorizedState(userId: userId) } func changeStateToUnauthorized() { state = UnauthorizedState() } } protocol State { func isAuthorized(context: Context) -\> Bool func userId(context: Context) -\> String? } class UnauthorizedState: State { func isAuthorized(context: Context) -\> Bool { return false } func userId(context: Context) -\> String? { return nil } } class AuthorizedState: State { let userId: String init(userId: String) { self.userId = userId } func isAuthorized(context: Context) -\> Bool { return true } func userId(context: Context) -\> String? { return userId } }

Usage

let userContext = Context() (userContext.isAuthorized, userContext.userId) userContext.changeStateToAuthorized(userId: "admin") (userContext.isAuthorized, userContext.userId) // now logged in as "admin" userContext.changeStateToUnauthorized() (userContext.isAuthorized, userContext.userId)

πŸ’‘ Strategy

The strategy pattern is used to create an interchangeable family of algorithms from which the required process is chosen at run-time.

Example

struct TestSubject { let pupilDiameter: Double let blushResponse: Double let isOrganic: Bool } protocol RealnessTesting: AnyObject { func testRealness(\_ testSubject: TestSubject) -\> Bool } final class VoightKampffTest: RealnessTesting { func testRealness(\_ testSubject: TestSubject) -\> Bool { return testSubject.pupilDiameter \< 30.0 || testSubject.blushResponse == 0.0 } } final class GeneticTest: RealnessTesting { func testRealness(\_ testSubject: TestSubject) -\> Bool { return testSubject.isOrganic } } final class BladeRunner { private let strategy: RealnessTesting init(test: RealnessTesting) { self.strategy = test } func testIfAndroid(\_ testSubject: TestSubject) -\> Bool { return !strategy.testRealness(testSubject) } }

Usage

let rachel = TestSubject(pupilDiameter: 30.2, blushResponse: 0.3, isOrganic: false) // Deckard is using a traditional test let deckard = BladeRunner(test: VoightKampffTest()) let isRachelAndroid = deckard.testIfAndroid(rachel) // Gaff is using a very precise method let gaff = BladeRunner(test: GeneticTest()) let isDeckardAndroid = gaff.testIfAndroid(rachel)

πŸƒ Visitor

The visitor pattern is used to separate a relatively complex set of structured data classes from the functionality that may be performed upon the data that they hold.

Example

protocol PlanetVisitor { func visit(planet: PlanetAlderaan) func visit(planet: PlanetCoruscant) func visit(planet: PlanetTatooine) func visit(planet: MoonJedha) } protocol Planet { func accept(visitor: PlanetVisitor) } final class MoonJedha: Planet { func accept(visitor: PlanetVisitor) { visitor.visit(planet: self) } } final class PlanetAlderaan: Planet { func accept(visitor: PlanetVisitor) { visitor.visit(planet: self) } } final class PlanetCoruscant: Planet { func accept(visitor: PlanetVisitor) { visitor.visit(planet: self) } } final class PlanetTatooine: Planet { func accept(visitor: PlanetVisitor) { visitor.visit(planet: self) } } final class NameVisitor: PlanetVisitor { var name = "" func visit(planet: PlanetAlderaan) { name = "Alderaan" } func visit(planet: PlanetCoruscant) { name = "Coruscant" } func visit(planet: PlanetTatooine) { name = "Tatooine" } func visit(planet: MoonJedha) { name = "Jedha" } }

Usage

let planets: [Planet] = [PlanetAlderaan(), PlanetCoruscant(), PlanetTatooine(), MoonJedha()] let names = planets.map { (planet: Planet) -\> String in let visitor = NameVisitor() planet.accept(visitor: visitor) return visitor.name } names

Creational

In software engineering, creational design patterns are design patterns that deal with object creation mechanisms, trying to create objects in a manner suitable to the situation. The basic form of object creation could result in design problems or added complexity to the design. Creational design patterns solve this problem by somehow controlling this object creation.

Source: wikipedia.org

🌰 Abstract Factory

The abstract factory pattern is used to provide a client with a set of related or dependant objects. The "family" of objects created by the factory are determined at run-time.

Example

Protocols

protocol BurgerDescribing { var ingredients: [String] { get } } struct CheeseBurger: BurgerDescribing { let ingredients: [String] } protocol BurgerMaking { func make() -\> BurgerDescribing } // Number implementations with factory methods final class BigKahunaBurger: BurgerMaking { func make() -\> BurgerDescribing { return CheeseBurger(ingredients: ["Cheese", "Burger", "Lettuce", "Tomato"]) } } final class JackInTheBox: BurgerMaking { func make() -\> BurgerDescribing { return CheeseBurger(ingredients: ["Cheese", "Burger", "Tomato", "Onions"]) } }

Abstract factory

enum BurgerFactoryType: BurgerMaking { case bigKahuna case jackInTheBox func make() -\> BurgerDescribing { switch self { case .bigKahuna: return BigKahunaBurger().make() case .jackInTheBox: return JackInTheBox().make() } } }

Usage

let bigKahuna = BurgerFactoryType.bigKahuna.make() let jackInTheBox = BurgerFactoryType.jackInTheBox.make()

πŸ‘· Builder

The builder pattern is used to create complex objects with constituent parts that must be created in the same order or using a specific algorithm. An external class controls the construction algorithm.

Example

final class DeathStarBuilder { var x: Double? var y: Double? var z: Double? typealias BuilderClosure = (DeathStarBuilder) -\> () init(buildClosure: BuilderClosure) { buildClosure(self) } } struct DeathStar : CustomStringConvertible { let x: Double let y: Double let z: Double init?(builder: DeathStarBuilder) { if let x = builder.x, let y = builder.y, let z = builder.z { self.x = x self.y = y self.z = z } else { return nil } } var description:String { return "Death Star at (x:\(x) y:\(y) z:\(z))" } }

Usage

let empire = DeathStarBuilder { builder in builder.x = 0.1 builder.y = 0.2 builder.z = 0.3 } let deathStar = DeathStar(builder:empire)

🏭 Factory Method

The factory pattern is used to replace class constructors, abstracting the process of object generation so that the type of the object instantiated can be determined at run-time.

Example

protocol CurrencyDescribing { var symbol: String { get } var code: String { get } } final class Euro: CurrencyDescribing { var symbol: String { return "€" } var code: String { return "EUR" } } final class UnitedStatesDolar: CurrencyDescribing { var symbol: String { return "$" } var code: String { return "USD" } } enum Country { case unitedStates case spain case uk case greece } enum CurrencyFactory { static func currency(for country: Country) -\> CurrencyDescribing? { switch country { case .spain, .greece: return Euro() case .unitedStates: return UnitedStatesDolar() default: return nil } } }

Usage

let noCurrencyCode = "No Currency Code Available" CurrencyFactory.currency(for: .greece)?.code ?? noCurrencyCode CurrencyFactory.currency(for: .spain)?.code ?? noCurrencyCode CurrencyFactory.currency(for: .unitedStates)?.code ?? noCurrencyCode CurrencyFactory.currency(for: .uk)?.code ?? noCurrencyCode

πŸƒ Prototype

The prototype pattern is used to instantiate a new object by copying all of the properties of an existing object, creating an independent clone. This practise is particularly useful when the construction of a new object is inefficient.

Example

struct MoonWorker { let name: String var health: Int = 100 init(name: String) { self.name = name } func clone() -\> MoonWorker { return MoonWorker(name: name) } }

Usage

let prototype = MoonWorker(name: "Sam Bell") var bell1 = prototype.clone() bell1.health = 12 var bell2 = prototype.clone() bell2.health = 23 var bell3 = prototype.clone() bell3.health = 0

πŸ’ Singleton

The singleton pattern ensures that only one object of a particular class is ever created. All further references to objects of the singleton class refer to the same underlying instance. There are very few applications, do not overuse this pattern!

Example:

final class ElonMusk { static let shared = ElonMusk() private init() { // Private initialization to ensure just one instance is created. } }

Usage:

let elon = ElonMusk.shared // There is only one Elon Musk folks.

Structural

In software engineering, structural design patterns are design patterns that ease the design by identifying a simple way to realize relationships between entities.

Source: wikipedia.org

πŸ”Œ Adapter

The adapter pattern is used to provide a link between two otherwise incompatible types by wrapping the "adaptee" with a class that supports the interface required by the client.

Example

protocol NewDeathStarSuperLaserAiming { var angleV: Double { get } var angleH: Double { get } }

Adaptee

struct OldDeathStarSuperlaserTarget { let angleHorizontal: Float let angleVertical: Float init(angleHorizontal: Float, angleVertical: Float) { self.angleHorizontal = angleHorizontal self.angleVertical = angleVertical } }

Adapter

struct NewDeathStarSuperlaserTarget: NewDeathStarSuperLaserAiming { private let target: OldDeathStarSuperlaserTarget var angleV: Double { return Double(target.angleVertical) } var angleH: Double { return Double(target.angleHorizontal) } init(\_ target: OldDeathStarSuperlaserTarget) { self.target = target } }

Usage

let target = OldDeathStarSuperlaserTarget(angleHorizontal: 14.0, angleVertical: 12.0) let newFormat = NewDeathStarSuperlaserTarget(target) newFormat.angleH newFormat.angleV

πŸŒ‰ Bridge

The bridge pattern is used to separate the abstract elements of a class from the implementation details, providing the means to replace the implementation details without modifying the abstraction.

Example

protocol Switch { var appliance: Appliance { get set } func turnOn() } protocol Appliance { func run() } final class RemoteControl: Switch { var appliance: Appliance func turnOn() { self.appliance.run() } init(appliance: Appliance) { self.appliance = appliance } } final class TV: Appliance { func run() { print("tv turned on"); } } final class VacuumCleaner: Appliance { func run() { print("vacuum cleaner turned on") } }

Usage

let tvRemoteControl = RemoteControl(appliance: TV()) tvRemoteControl.turnOn() let fancyVacuumCleanerRemoteControl = RemoteControl(appliance: VacuumCleaner()) fancyVacuumCleanerRemoteControl.turnOn()

🌿 Composite

The composite pattern is used to create hierarchical, recursive tree structures of related objects where any element of the structure may be accessed and utilised in a standard manner.

Example

Component

protocol Shape { func draw(fillColor: String) }

Leafs

final class Square: Shape { func draw(fillColor: String) { print("Drawing a Square with color \(fillColor)") } } final class Circle: Shape { func draw(fillColor: String) { print("Drawing a circle with color \(fillColor)") } }

Composite

final class Whiteboard: Shape { private lazy var shapes = [Shape]() init(\_ shapes: Shape...) { self.shapes = shapes } func draw(fillColor: String) { for shape in self.shapes { shape.draw(fillColor: fillColor) } } }

Usage:

var whiteboard = Whiteboard(Circle(), Square()) whiteboard.draw(fillColor: "Red")

🍧 Decorator

The decorator pattern is used to extend or alter the functionality of objects at run- time by wrapping them in an object of a decorator class. This provides a flexible alternative to using inheritance to modify behaviour.

Example

protocol CostHaving { var cost: Double { get } } protocol IngredientsHaving { var ingredients: [String] { get } } typealias BeverageDataHaving = CostHaving & IngredientsHaving struct SimpleCoffee: BeverageDataHaving { let cost: Double = 1.0 let ingredients = ["Water", "Coffee"] } protocol BeverageHaving: BeverageDataHaving { var beverage: BeverageDataHaving { get } } struct Milk: BeverageHaving { let beverage: BeverageDataHaving var cost: Double { return beverage.cost + 0.5 } var ingredients: [String] { return beverage.ingredients + ["Milk"] } } struct WhipCoffee: BeverageHaving { let beverage: BeverageDataHaving var cost: Double { return beverage.cost + 0.5 } var ingredients: [String] { return beverage.ingredients + ["Whip"] } }

Usage:

var someCoffee: BeverageDataHaving = SimpleCoffee() print("Cost: \(someCoffee.cost); Ingredients: \(someCoffee.ingredients)") someCoffee = Milk(beverage: someCoffee) print("Cost: \(someCoffee.cost); Ingredients: \(someCoffee.ingredients)") someCoffee = WhipCoffee(beverage: someCoffee) print("Cost: \(someCoffee.cost); Ingredients: \(someCoffee.ingredients)")

🎁 Façade

The facade pattern is used to define a simplified interface to a more complex subsystem.

Example

final class Defaults { private let defaults: UserDefaults init(defaults: UserDefaults = .standard) { self.defaults = defaults } subscript(key: String) -\> String? { get { return defaults.string(forKey: key) } set { defaults.set(newValue, forKey: key) } } }

Usage

let storage = Defaults() // Store storage["Bishop"] = "Disconnect me. I’d rather be nothing" // Read storage["Bishop"]

πŸƒ Flyweight

The flyweight pattern is used to minimize memory usage or computational expenses by sharing as much as possible with other similar objects.

Example

// Instances of SpecialityCoffee will be the Flyweights struct SpecialityCoffee { let origin: String } protocol CoffeeSearching { func search(origin: String) -\> SpecialityCoffee? } // Menu acts as a factory and cache for SpecialityCoffee flyweight objects final class Menu: CoffeeSearching { private var coffeeAvailable: [String: SpecialityCoffee] = [:] func search(origin: String) -\> SpecialityCoffee? { if coffeeAvailable.index(forKey: origin) == nil { coffeeAvailable[origin] = SpecialityCoffee(origin: origin) } return coffeeAvailable[origin] } } final class CoffeeShop { private var orders: [Int: SpecialityCoffee] = [:] private let menu: CoffeeSearching init(menu: CoffeeSearching) { self.menu = menu } func takeOrder(origin: String, table: Int) { orders[table] = menu.search(origin: origin) } func serve() { for (table, origin) in orders { print("Serving \(origin) to table \(table)") } } }

Usage

let coffeeShop = CoffeeShop(menu: Menu()) coffeeShop.takeOrder(origin: "Yirgacheffe, Ethiopia", table: 1) coffeeShop.takeOrder(origin: "Buziraguhindwa, Burundi", table: 3) coffeeShop.serve()

β˜” Protection Proxy

The proxy pattern is used to provide a surrogate or placeholder object, which references an underlying object. Protection proxy is restricting access.

Example

protocol DoorOpening { func open(doors: String) -\> String } final class HAL9000: DoorOpening { func open(doors: String) -\> String { return ("HAL9000: Affirmative, Dave. I read you. Opened \(doors).") } } final class CurrentComputer: DoorOpening { private var computer: HAL9000! func authenticate(password: String) -\> Bool { guard password == "pass" else { return false } computer = HAL9000() return true } func open(doors: String) -\> String { guard computer != nil else { return "Access Denied. I'm afraid I can't do that." } return computer.open(doors: doors) } }

Usage

let computer = CurrentComputer() let podBay = "Pod Bay Doors" computer.open(doors: podBay) computer.authenticate(password: "pass") computer.open(doors: podBay)

🍬 Virtual Proxy

The proxy pattern is used to provide a surrogate or placeholder object, which references an underlying object. Virtual proxy is used for loading object on demand.

Example

protocol HEVSuitMedicalAid { func administerMorphine() -\> String } final class HEVSuit: HEVSuitMedicalAid { func administerMorphine() -\> String { return "Morphine administered." } } final class HEVSuitHumanInterface: HEVSuitMedicalAid { lazy private var physicalSuit: HEVSuit = HEVSuit() func administerMorphine() -\> String { return physicalSuit.administerMorphine() } }

Usage

let humanInterface = HEVSuitHumanInterface() humanInterface.administerMorphine()

Info

πŸ“– Descriptions from: Gang of Four Design Patterns Reference Sheet

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.