Need help with UniRx?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

5.4K Stars 744 Forks MIT License 1.0K Commits 218 Opened issues


Reactive Extensions for Unity

Services available


Need anything else?

Contributors list

UniRx - Reactive Extensions for Unity

Created by Yoshifumi Kawai(neuecc)

Become as Backer Become as Sponsor

What is UniRx?

UniRx (Reactive Extensions for Unity) is a reimplementation of the .NET Reactive Extensions. The Official Rx implementation is great but doesn't work on Unity and has issues with iOS IL2CPP compatibility. This library fixes those issues and adds some specific utilities for Unity. Supported platforms are PC/Mac/Android/iOS/WebGL/WindowsStore/etc and the library.

UniRx is available on the Unity Asset Store (FREE) -

Blog for update info -

Support thread on the Unity Forums: Ask me any question -

Release Notes, see UniRx/releases

UniRx is Core Library (Port of Rx) + Platform Adaptor (MainThreadScheduler/FromCoroutine/etc) + Framework (ObservableTriggers/ReactiveProeperty/etc).

Note: async/await integration(UniRx.Async) is separated to Cysharp/UniTask after ver. 7.0.

Why Rx?

Ordinarily, Network operations in Unity require the use of

. That said, using
is not good practice for asynchronous operations for the following (and other) reasons:
  1. Coroutines can't return any values, since its return type must be IEnumerator.
  2. Coroutines can't handle exceptions, because yield return statements cannot be surrounded with a try-catch construction.

This kind of lack of composability causes operations to be close-coupled, which often results in huge monolithic IEnumerators.

Rx cures that kind of "asynchronous blues". Rx is a library for composing asynchronous and event-based programs using observable collections and LINQ-style query operators.

The game loop (every Update, OnCollisionEnter, etc), sensor data (Kinect, Leap Motion, VR Input, etc.) are all types of events. Rx represents events as reactive sequences which are both easily composable and support time-based operations by using LINQ query operators.

Unity is generally single threaded but UniRx facilitates multithreading for joins, cancels, accessing GameObjects, etc.

UniRx helps UI programming with uGUI. All UI events (clicked, valuechanged, etc) can be converted to UniRx event streams.

Unity supports async/await from 2017 with C# upgrades, UniRx family prjects provides more lightweight, more powerful async/await integration with Unity. Please see Cysharp/UniTask.


Great introduction to Rx article: The introduction to Reactive Programming you've been missing.

The following code implements the double click detection example from the article in UniRx:

var clickStream = Observable.EveryUpdate()
    .Where(_ => Input.GetMouseButtonDown(0));

clickStream.Buffer(clickStream.Throttle(TimeSpan.FromMilliseconds(250))) .Where(xs => xs.Count >= 2) .Subscribe(xs => Debug.Log("DoubleClick Detected! Count:" + xs.Count));

This example demonstrates the following features (in only five lines!):

  • The game loop (Update) as an event stream
  • Composable event streams
  • Merging self stream
  • Easy handling of time based operations

Network operations

Use ObservableWWW for asynchronous network operations. Its Get/Post functions return subscribable IObservables:

        x => Debug.Log(x.Substring(0, 100)), // onSuccess
        ex => Debug.LogException(ex)); // onError

Rx is composable and cancelable. You can also query with LINQ expressions:

// composing asynchronous sequence with LINQ query expressions
var query = from google in ObservableWWW.Get("")
            from bing in ObservableWWW.Get("")
            from unknown in ObservableWWW.Get(google + bing)
            select new { google, bing, unknown };

var cancel = query.Subscribe(x => Debug.Log(x));

// Call Dispose is cancel. cancel.Dispose();

Use Observable.WhenAll for parallel requests:

// Observable.WhenAll is for parallel asynchronous operation
// (It's like Observable.Zip but specialized for single async operations like Task.WhenAll)
var parallel = Observable.WhenAll(

parallel.Subscribe(xs => { Debug.Log(xs[0].Substring(0, 100)); // google Debug.Log(xs[1].Substring(0, 100)); // bing Debug.Log(xs[2].Substring(0, 100)); // unity });

Progress information is available:

// notifier for progress use ScheduledNotifier or new Progress(/* action */)
var progressNotifier = new ScheduledNotifier();
progressNotifier.Subscribe(x => Debug.Log(x)); // write www.progress

// pass notifier to WWW.Get/Post ObservableWWW.Get("", progress: progressNotifier).Subscribe();

Error handling:

// If WWW has .error, ObservableWWW throws WWWErrorException to onError pipeline.
// WWWErrorException has RawErrorMessage, HasResponse, StatusCode, ResponseHeaders
    .CatchIgnore((WWWErrorException ex) =>
        if (ex.HasResponse)
        foreach (var item in ex.ResponseHeaders)
            Debug.Log(item.Key + ":" + item.Value);

Using with IEnumerators (Coroutines)

IEnumerator (Coroutine) is Unity's primitive asynchronous tool. UniRx integrates coroutines and IObservables. You can write asynchronious code in coroutines, and orchestrate them using UniRx. This is best way to control asynchronous flow.

// two coroutines

IEnumerator AsyncA() { Debug.Log("a start"); yield return new WaitForSeconds(1); Debug.Log("a end"); }

IEnumerator AsyncB() { Debug.Log("b start"); yield return new WaitForEndOfFrame(); Debug.Log("b end"); }

// main code // Observable.FromCoroutine converts IEnumerator to Observable. // You can also use the shorthand, AsyncA().ToObservable()

// after AsyncA completes, run AsyncB as a continuous routine. // UniRx expands SelectMany(IEnumerator) as SelectMany(IEnumerator.ToObservable()) var cancel = Observable.FromCoroutine(AsyncA) .SelectMany(AsyncB) .Subscribe();

// you can stop a coroutine by calling your subscription's Dispose. cancel.Dispose();

If in Unity 5.3, you can use ToYieldInstruction for Observable to Coroutine.

IEnumerator TestNewCustomYieldInstruction()
    // wait Rx Observable.
    yield return Observable.Timer(TimeSpan.FromSeconds(1)).ToYieldInstruction();

// you can change the scheduler(this is ignore Time.scale)
yield return Observable.Timer(TimeSpan.FromSeconds(1), Scheduler.MainThreadIgnoreTimeScale).ToYieldInstruction();

// get return value from ObservableYieldInstruction
var o = ObservableWWW.Get("").ToYieldInstruction(throwOnError: false);
yield return o;

if (o.HasError) { Debug.Log(o.Error.ToString()); }
if (o.HasResult) { Debug.Log(o.Result); }

// other sample(wait until transform.position.y >= 100) 
yield return this.transform.ObserveEveryValueChanged(x => x.position).FirstOrDefault(p => p.y >= 100).ToYieldInstruction();


Normally, we have to use callbacks when we require a coroutine to return a value. Observable.FromCoroutine can convert coroutines to cancellable IObservable[T] instead.

// public method
public static IObservable GetWWW(string url)
    // convert coroutine to IObservable
    return Observable.FromCoroutine((observer, cancellationToken) => GetWWWCore(url, observer, cancellationToken));

// IObserver is a callback publisher // Note: IObserver's basic scheme is "OnNext* (OnError | Oncompleted)?" static IEnumerator GetWWWCore(string url, IObserver observer, CancellationToken cancellationToken) { var www = new UnityEngine.WWW(url); while (!www.isDone && !cancellationToken.IsCancellationRequested) { yield return null; }

if (cancellationToken.IsCancellationRequested) yield break;

if (www.error != null)
    observer.OnError(new Exception(www.error));
    observer.OnCompleted(); // IObserver needs OnCompleted after OnNext!


Here are some more examples. Next is a multiple OnNext pattern.

public static IObservable ToObservable(this UnityEngine.AsyncOperation asyncOperation)
    if (asyncOperation == null) throw new ArgumentNullException("asyncOperation");

return Observable.FromCoroutine<float>((observer, cancellationToken) =&gt; RunAsyncOperation(asyncOperation, observer, cancellationToken));


static IEnumerator RunAsyncOperation(UnityEngine.AsyncOperation asyncOperation, IObserver observer, CancellationToken cancellationToken) { while (!asyncOperation.isDone && !cancellationToken.IsCancellationRequested) { observer.OnNext(asyncOperation.progress); yield return null; } if (!cancellationToken.IsCancellationRequested) { observer.OnNext(asyncOperation.progress); // push 100% observer.OnCompleted(); } }

// usecase Application.LoadLevelAsync("testscene") .ToObservable() .Do(x => Debug.Log(x)) // output progress .Last() // last sequence is load completed .Subscribe();

Using for MultiThreading

// Observable.Start is start factory methods on specified scheduler
// default is on ThreadPool
var heavyMethod = Observable.Start(() =>
    // heavy method...
    return 10;

var heavyMethod2 = Observable.Start(() => { // heavy method... System.Threading.Thread.Sleep(TimeSpan.FromSeconds(3)); return 10; });

// Join and await two other thread values Observable.WhenAll(heavyMethod, heavyMethod2) .ObserveOnMainThread() // return to main thread .Subscribe(xs => { // Unity can't touch GameObject from other thread // but use ObserveOnMainThread, you can touch GameObject naturally. (GameObject.Find("myGuiText")).guiText.text = xs[0] + ":" + xs[1]; });


UniRx's default time based operations (Interval, Timer, Buffer(timeSpan), etc) use

as their scheduler. That means most operators (except for
) work on a single thread, so ObserverOn isn't needed and thread safety measures can be ignored. This is differet from the standard RxNet implementation but better suited to the Unity environment.

runs under Time.timeScale's influence. If you want to ignore the time scale, use

MonoBehaviour triggers

UniRx can handle MonoBehaviour events with

using UniRx;
using UniRx.Triggers; // need UniRx.Triggers namespace

public class MyComponent : MonoBehaviour { void Start() { // Get the plain object var cube = GameObject.CreatePrimitive(PrimitiveType.Cube);

    // Add ObservableXxxTrigger for handle MonoBehaviour's event as Observable
        .Subscribe(x =&gt; Debug.Log("cube"), () =&gt; Debug.Log("destroy"));

    // destroy after 3 second:)
    GameObject.Destroy(cube, 3f);


Supported triggers are listed in

These can also be handled more easily by directly subscribing to observables returned by extension methods on Component/GameObject. These methods inject ObservableTrigger automaticaly (except for

using UniRx;
using UniRx.Triggers; // need UniRx.Triggers namespace for extend gameObejct

public class DragAndDropOnce : MonoBehaviour { void Start() { // All events can subscribe by ***AsObservable this.OnMouseDownAsObservable() .SelectMany(_ => this.UpdateAsObservable()) .TakeUntil(this.OnMouseUpAsObservable()) .Select(_ => Input.mousePosition) .Subscribe(x => Debug.Log(x)); } }

Previous versions of UniRx provided

. This is a legacy interface that is no longer supported. Please use UniRx.Triggers instead.

Creating custom triggers

Converting to Observable is the best way to handle Unity events. If the standard triggers supplied by UniRx are not enough, you can create custom triggers. To demonstrate, here's a LongTap trigger for uGUI:

public class ObservableLongPointerDownTrigger : ObservableTriggerBase, IPointerDownHandler, IPointerUpHandler
    public float IntervalSecond = 1f;

Subject<unit> onLongPointerDown;

float? raiseTime;

void Update()
    if (raiseTime != null &amp;&amp; raiseTime &lt;= Time.realtimeSinceStartup)
        if (onLongPointerDown != null) onLongPointerDown.OnNext(Unit.Default);
        raiseTime = null;

void IPointerDownHandler.OnPointerDown(PointerEventData eventData)
    raiseTime = Time.realtimeSinceStartup + IntervalSecond;

void IPointerUpHandler.OnPointerUp(PointerEventData eventData)
    raiseTime = null;

public IObservable<unit> OnLongPointerDownAsObservable()
    return onLongPointerDown ?? (onLongPointerDown = new Subject<unit>());

protected override void RaiseOnCompletedOnDestroy()
    if (onLongPointerDown != null)


It can be used as easily as the standard triggers:

var trigger = button.AddComponent();


Observable Lifecycle Management

When is OnCompleted called? Subscription lifecycle management is very important to consider when using UniRx.

call OnCompleted when the GameObject they are attached to is destroyed. Other static generator methods (
, etc...) do not stop automatically, and their subscriptions should be managed manually.

Rx provides some helper methods, such as

which allows you to dispose of several subscriptions at once:
// CompositeDisposable is similar with List, manage multiple IDisposable
CompositeDisposable disposables = new CompositeDisposable(); // field

void Start() { Observable.EveryUpdate().Subscribe(x => Debug.Log(x)).AddTo(disposables); }

void OnTriggerEnter(Collider other) { // .Clear() => Dispose is called for all inner disposables, and the list is cleared. // .Dispose() => Dispose is called for all inner disposables, and Dispose is called immediately after additional Adds. disposables.Clear(); }

If you want to automatically Dispose when a GameObjects is destroyed, use AddTo(GameObject/Component):

void Start()
    Observable.IntervalFrame(30).Subscribe(x => Debug.Log(x)).AddTo(this);

AddTo calls facilitate automatic Dispose. If you needs special OnCompleted handling in the pipeline, however, use

    .Subscribe(x => Debug.Log(x), () => Debug.Log("completed!"));

If you handle events,

is an important but dangerous method. It may cause an infinite loop, so handle with care:
using UniRx;
using UniRx.Triggers;

public class DangerousDragAndDrop : MonoBehaviour { void Start() { this.gameObject.OnMouseDownAsObservable() .SelectMany(_ => this.gameObject.UpdateAsObservable()) .TakeUntil(this.gameObject.OnMouseUpAsObservable()) .Select(_ => Input.mousePosition) .Repeat() // dangerous!!! Repeat cause infinite repeat subscribe at GameObject was destroyed.(If in UnityEditor, Editor is freezed) .Subscribe(x => Debug.Log(x)); } }

UniRx provides an additional safe Repeat method.

: if contiguous "OnComplete" are called repeat stops.
allows to stop when a target GameObject has been destroyed:
    .SelectMany(_ => this.gameObject.UpdateAsObservable())
    .Select(_ => Input.mousePosition)
    .RepeatUntilDestroy(this) // safety way
    .Subscribe(x => Debug.Log(x));            

UniRx gurantees hot observable(FromEvent/Subject/ReactiveProperty/UnityUI.AsObservable..., there are like event) have unhandled exception durability. What is it? If subscribe in subcribe, does not detach event.

button.OnClickAsObservable().Subscribe(_ =>
    // If throws error in inner subscribe, but doesn't detached OnClick event.
    ObservableWWW.Get("htttp://error/").Subscribe(x =>

This behaviour is sometimes useful such as user event handling.

All class instances provide an

method, which watches for changing values every frame:
// watch position change
this.transform.ObserveEveryValueChanged(x => x.position).Subscribe(x => Debug.Log(x));

It's very useful. If the watch target is a GameObject, it will stop observing when the target is destroyed, and call OnCompleted. If the watch target is a plain C# Object, OnCompleted will be called on GC.

Converting Unity callbacks to IObservables

Use Subject (or AsyncSubject for asynchronious operations):

public class LogCallback
    public string Condition;
    public string StackTrace;
    public UnityEngine.LogType LogType;

public static class LogHelper { static Subject subject;

public static IObservable<logcallback> LogCallbackAsObservable()
    if (subject == null)
        subject = new Subject<logcallback>();

        // Publish to Subject in callback
        UnityEngine.Application.RegisterLogCallback((condition, stackTrace, type) =&gt;
            subject.OnNext(new LogCallback { Condition = condition, StackTrace = stackTrace, LogType = type });

    return subject.AsObservable();


// method is separatable and composable LogHelper.LogCallbackAsObservable() .Where(x => x.LogType == LogType.Warning) .Subscribe();

LogHelper.LogCallbackAsObservable() .Where(x => x.LogType == LogType.Error) .Subscribe();

In Unity5,

was removed in favor of
, so we can now simply use
public static IObservable LogCallbackAsObservable()
    return Observable.FromEvent(
        h => (condition, stackTrace, type) => h(new LogCallback { Condition = condition, StackTrace = stackTrace, LogType = type }),
        h => Application.logMessageReceived += h, h => Application.logMessageReceived -= h);

Stream Logger

// using UniRx.Diagnostics;

// logger is threadsafe, define per class with name. static readonly Logger logger = new Logger("Sample11");

// call once at applicationinit public static void ApplicationInitialize() { // Log as Stream, UniRx.Diagnostics.ObservableLogger.Listener is IObservable // You can subscribe and output to any place. ObservableLogger.Listener.LogToUnityDebug();

// for example, filter only Exception and upload to web.
// (make custom sink(IObserver<evententry>) is better to use)
    .Where(x =&gt; x.LogType == LogType.Exception)
    .Subscribe(x =&gt;
        // ObservableWWW.Post("", null).Subscribe();


// Debug is write only DebugBuild. logger.Debug("Debug Message");

// or other logging methods logger.Log("Message"); logger.Exception(new Exception("test exception"));


operator in
namespace helps debugging.
// needs Diagnostics using
using UniRx.Diagnostics;

// [DebugDump, Normal]OnSubscribe // [DebugDump, Normal]OnNext(1) // [DebugDump, Normal]OnNext(10) // [DebugDump, Normal]OnCompleted() { var subject = new Subject();

subject.Debug("DebugDump, Normal").Subscribe();



// [DebugDump, Cancel]OnSubscribe // [DebugDump, Cancel]OnNext(1) // [DebugDump, Cancel]OnCancel { var subject = new Subject();

var d = subject.Debug("DebugDump, Cancel").Subscribe();



// [DebugDump, Error]OnSubscribe // [DebugDump, Error]OnNext(1) // [DebugDump, Error]OnError(System.Exception) { var subject = new Subject();

subject.Debug("DebugDump, Error").Subscribe();

subject.OnError(new Exception());


shows sequence element on

timing to Debug.Log. It enables only

Unity-specific Extra Gems

// Unity's singleton UiThread Queue Scheduler

// Global StartCoroutine runner MainThreadDispatcher.StartCoroutine(enumerator)

// convert Coroutine to IObservable Observable.FromCoroutine((observer, token) => enumerator(observer, token));

// convert IObservable to Coroutine yield return Observable.Range(1, 10).ToYieldInstruction(); // after Unity 5.3, before can use StartAsCoroutine()

// Lifetime hooks Observable.EveryApplicationPause(); Observable.EveryApplicationFocus(); Observable.OnceApplicationQuit();

Framecount-based time operators

UniRx provides a few framecount-based time operators:



For example, delayed invoke once:

Observable.TimerFrame(100).Subscribe(_ => Debug.Log("after 100 frame"));

Every* Method's execution order is

EveryGameObjectUpdate(in MainThreadDispatcher's Execution Order) ->
EveryUpdate -> 
EveryLateUpdate -> 

EveryGameObjectUpdate invoke from same frame if caller is called before MainThreadDispatcher.Update(I recommend MainThreadDispatcher called first than others(ScriptExecutionOrder makes -32000)
EveryLateUpdate, EveryEndOfFrame invoke from same frame.
EveryUpdate, invoke from next frame.


MicroCoroutine is memory efficient and fast coroutine worker. This implemantation is based on Unity blog's 10000 UPDATE() CALLS, avoid managed-unmanaged overhead so gets 10x faster iteration. MicroCoroutine is automaticaly used on Framecount-based time operators and ObserveEveryValueChanged.

If you want to use MicroCoroutine instead of standard unity coroutine, use

int counter;

IEnumerator Worker() { while(true) { counter++; yield return null; } }

void Start() { for(var i = 0; i < 10000; i++) { // fast, memory efficient MainThreadDispatcher.StartUpdateMicroCoroutine(Worker());

    // slow...
    // StartCoroutine(Worker());



MicroCoroutine's limitation, only supports

yield return null
and update timing is determined start method(

If you combine with other IObservable, you can check completed property like isDone.

IEnumerator MicroCoroutineWithToYieldInstruction()
    var www = ObservableWWW.Get("http://aaa").ToYieldInstruction();
    while (!www.IsDone)
        yield return null;

if (www.HasResult)


uGUI Integration

UniRx can handle

s easily. Use
to subscribe to events:
public Button MyButton;
// ---
MyButton.onClick.AsObservable().Subscribe(_ => Debug.Log("clicked"));

Treating Events as Observables enables declarative UI programming.

public Toggle MyToggle;
public InputField MyInput;
public Text MyText;
public Slider MySlider;

// On Start, you can write reactive rules for declaretive/reactive ui programming void Start() { // Toggle, Input etc as Observable (OnValueChangedAsObservable is a helper providing isOn value on subscribe) // SubscribeToInteractable is an Extension Method, same as .interactable = x) MyToggle.OnValueChangedAsObservable().SubscribeToInteractable(MyButton);

// Input is displayed after a 1 second delay
    .Where(x =&gt; x != null)
    .SubscribeToText(MyText); // SubscribeToText is helper for subscribe to text

// Converting for human readability
    .SubscribeToText(MyText, x =&gt; Math.Round(x, 2).ToString());


For more on reactive UI programming please consult Sample12, Sample13 and the ReactiveProperty section below.

ReactiveProperty, ReactiveCollection

Game data often requires notification. Should we use properties and events (callbacks)? That's often too complex. UniRx provides ReactiveProperty, a lightweight property broker.

// Reactive Notification Model
public class Enemy
    public ReactiveProperty CurrentHp { get; private set; }

public ReactiveProperty<bool> IsDead { get; private set; }

public Enemy(int initialHp)
    // Declarative Property
    CurrentHp = new ReactiveProperty<long>(initialHp);
    IsDead = CurrentHp.Select(x =&gt; x &lt;= 0).ToReactiveProperty();


// --- // onclick, HP decrement MyButton.OnClickAsObservable().Subscribe(_ => enemy.CurrentHp.Value -= 99); // subscribe from notification model. enemy.CurrentHp.SubscribeToText(MyText); enemy.IsDead.Where(isDead => isDead == true) .Subscribe(_ => { MyButton.interactable = false; });

You can combine ReactiveProperties, ReactiveCollections and observables returned by UnityEvent.AsObservable. All UI elements are observable.

Generic ReactiveProperties are not serializable or inspecatble in the Unity editor, but UniRx provides specialized subclasses of ReactiveProperty that are. These include classes such as Int/LongReactiveProperty, Float/DoubleReactiveProperty, StringReactiveProperty, BoolReactiveProperty and more (Browse them here: InspectableReactiveProperty.cs). All are fully editable in the inspector. For custom Enum ReactiveProperty, it's easy to write a custom inspectable ReactiveProperty[T].

If you needs

attach to ReactiveProperty, you can use
instead of

The provided derived InpsectableReactiveProperties are displayed in the inspector naturally and notify when their value is changed even when it is changed in the inspector.

This functionality is provided by InspectorDisplayDrawer. You can supply your own custom specialized ReactiveProperties by inheriting from it:

public enum Fruit
    Apple, Grape

[Serializable] public class FruitReactiveProperty : ReactiveProperty { public FruitReactiveProperty() { }

public FruitReactiveProperty(Fruit initialValue)


[UnityEditor.CustomPropertyDrawer(typeof(FruitReactiveProperty))] [UnityEditor.CustomPropertyDrawer(typeof(YourSpecializedReactiveProperty2))] // and others... public class ExtendInspectorDisplayDrawer : InspectorDisplayDrawer { }

If a ReactiveProperty value is only updated within a stream, you can make it read only by using from

public class Person
    public ReactiveProperty GivenName { get; private set; }
    public ReactiveProperty FamilyName { get; private set; }
    public ReadOnlyReactiveProperty FullName { get; private set; }

public Person(string givenName, string familyName)
    GivenName = new ReactiveProperty<string>(givenName);
    FamilyName = new ReactiveProperty<string>(familyName);
    // If change the givenName or familyName, notify with fullName!
    FullName = GivenName.CombineLatest(FamilyName, (x, y) =&gt; x + " " + y).ToReadOnlyReactiveProperty();


Model-View-(Reactive)Presenter Pattern

UniRx makes it possible to implement the MVP(MVRP) Pattern.

Why should we use MVP instead of MVVM? Unity doesn't provide a UI binding mechanism and creating a binding layer is too complex and loss and affects performance. Still, Views need updating. Presenters are aware of their view's components and can update them. Although there is no real binding, Observables enables subscription to notification, which can act much like the real thing. This pattern is called a Reactive Presenter:

// Presenter for scene(canvas) root.
public class ReactivePresenter : MonoBehaviour
    // Presenter is aware of its View (binded in the inspector)
    public Button MyButton;
    public Toggle MyToggle;

// State-Change-Events from Model by ReactiveProperty
Enemy enemy = new Enemy(1000);

void Start()
    // Rx supplies user events from Views and Models in a reactive manner 
    MyButton.OnClickAsObservable().Subscribe(_ =&gt; enemy.CurrentHp.Value -= 99);

    // Models notify Presenters via Rx, and Presenters update their views
    enemy.IsDead.Where(isDead =&gt; isDead == true)
        .Subscribe(_ =&gt;
            MyToggle.interactable = MyButton.interactable = false;


// The Model. All property notify when their values change public class Enemy { public ReactiveProperty CurrentHp { get; private set; }

public ReactiveProperty<bool> IsDead { get; private set; }

public Enemy(int initialHp)
    // Declarative Property
    CurrentHp = new ReactiveProperty<long>(initialHp);
    IsDead = CurrentHp.Select(x =&gt; x &lt;= 0).ToReactiveProperty();


A View is a scene, that is a Unity hierarchy. Views are associated with Presenters by the Unity Engine on initialize. The XxxAsObservable methods make creating event signals simple, without any overhead. SubscribeToText and SubscribeToInteractable are simple binding-like helpers. These may be simple tools, but they are very powerful. They feel natural in the Unity environment and provide high performance and a clean architecture.

V -> RP -> M -> RP -> V completely connected in a reactive way. UniRx provides all of the adaptor methods and classes, but other MVVM(or MV*) frameworks can be used instead. UniRx/ReactiveProperty is only simple toolkit.

GUI programming also benefits from ObservableTriggers. ObservableTriggers convert Unity events to Observables, so the MV(R)P pattern can be composed using them. For example,

converts uGUI events to Observable:
var eventTrigger = this.gameObject.AddComponent();
    .SelectMany(_ => eventTrigger.OnDragAsObservable(), (start, current) => UniRx.Tuple.Create(start, current))
    .Subscribe(x => Debug.Log(x));


Note: PresenterBase works enough, but too complex.
You can use simple

method and call parent to child, it works for most scenario.
So I don't recommend using
, sorry.

ReactiveCommand, AsyncReactiveCommand

ReactiveCommand abstraction of button command with boolean interactable.

public class Player
   public ReactiveProperty Hp;     
   public ReactiveCommand Resurrect;        

public Player() {
Hp = new ReactiveProperty(1000);

    // If dead, can not execute.        
    Resurrect = Hp.Select(x =&gt; x &lt;= 0).ToReactiveCommand();     
    // Execute when clicked     
    Resurrect.Subscribe(_ =&gt;        
         Hp.Value = 1000;       


public class Presenter : MonoBehaviour
public Button resurrectButton;

Player player;      

void Start()
  player = new Player();        

  // If Hp &lt;= 0, can't press button.        


AsyncReactiveCommand is a variation of ReactiveCommand that

(in many cases bind to button's interactable) is changed to false until asynchronous execution was finished.
public class Presenter : MonoBehaviour      
    public UnityEngine.UI.Button button;        

void Start()
    var command = new AsyncReactiveCommand();       

    command.Subscribe(_ =&gt;      
        // heavy, heavy, heavy method....       
        return Observable.Timer(TimeSpan.FromSeconds(3)).AsUnitObservable();        

    // after clicked, button shows disable for 3 seconds        

    // Note:shortcut extension, bind aync onclick directly      
    button.BindToOnClick(_ =&gt;       
        return Observable.Timer(TimeSpan.FromSeconds(3)).AsUnitObservable();        


has three constructor.
  • ()
    - CanExecute is changed to false until async execution finished
  • (IObservable canExecuteSource)
    - Mixed with empty, CanExecute becomes true when canExecuteSource send to true and does not executing
  • (IReactiveProperty sharedCanExecute)
    - share execution status between multiple AsyncReactiveCommands, if one AsyncReactiveCommand is executing, other AsyncReactiveCommands(with same sharedCanExecute property) becomes CanExecute false until async execution finished
public class Presenter : MonoBehaviour
    public UnityEngine.UI.Button button1;
    public UnityEngine.UI.Button button2;

void Start()
    // share canExecute status.
    // when clicked button1, button1 and button2 was disabled for 3 seconds.

    var sharedCanExecute = new ReactiveProperty<bool>();

    button1.BindToOnClick(sharedCanExecute, _ =&gt;
        return Observable.Timer(TimeSpan.FromSeconds(3)).AsUnitObservable();

    button2.BindToOnClick(sharedCanExecute, _ =&gt;
        return Observable.Timer(TimeSpan.FromSeconds(3)).AsUnitObservable();


MessageBroker, AsyncMessageBroker

MessageBroker is Rx based in-memory pubsub system filtered by type.

public class TestArgs
    public int Value { get; set; }

// Subscribe message on global-scope. MessageBroker.Default.Receive().Subscribe(x => UnityEngine.Debug.Log(x));

// Publish message MessageBroker.Default.Publish(new TestArgs { Value = 1000 });

AsyncMessageBroker is variation of MessageBroker, can await Publish call.

AsyncMessageBroker.Default.Subscribe(x =>
    // show after 3 seconds.
    return Observable.Timer(TimeSpan.FromSeconds(3))
        .ForEachAsync(_ =>

AsyncMessageBroker.Default.PublishAsync(new TestArgs { Value = 3000 }) .Subscribe(_ => { UnityEngine.Debug.Log("called all subscriber completed"); });


includes serveral Rx-ish tools. Currently includes
. It can
for fill pool before rent operation.
// sample class
public class Foobar : MonoBehaviour
    public IObservable ActionAsync()
        // heavy, heavy, action...
        return Observable.Timer(TimeSpan.FromSeconds(3)).AsUnitObservable();

public class FoobarPool : ObjectPool { readonly Foobar prefab; readonly Transform hierarchyParent;

public FoobarPool(Foobar prefab, Transform hierarchyParent)
    this.prefab = prefab;
    this.hierarchyParent = hierarchyParent;

protected override Foobar CreateInstance()
    var foobar = GameObject.Instantiate<foobar>(prefab);

    return foobar;

// You can overload OnBeforeRent, OnBeforeReturn, OnClear for customize action.
// In default, OnBeforeRent = SetActive(true), OnBeforeReturn = SetActive(false)

// protected override void OnBeforeRent(Foobar instance)
// protected override void OnBeforeReturn(Foobar instance)
// protected override void OnClear(Foobar instance)


public class Presenter : MonoBehaviour { FoobarPool pool = null;

public Foobar prefab;
public Button rentButton;

void Start()
    pool = new FoobarPool(prefab, this.transform);

    rentButton.OnClickAsObservable().Subscribe(_ =&gt;
        var foobar = pool.Rent();
        foobar.ActionAsync().Subscribe(__ =&gt;
            // if action completed, return to pool


Visual Studio Analyzer

For Visual Studio 2015 users, a custom analyzer, UniRxAnalyzer, is provided. It can, for example, detect when streams aren't subscribed to.

doesn't fire until it's subscribed to, so the analyzer warns about incorrect usage. It can be downloaded from NuGet.

Please submit new analyzer ideas on GitHub Issues!


See UniRx/Examples

The samples demonstrate how to do resource management (Sample09_EventHandling), what is the MainThreadDispatcher, among other things.

Windows Store/Phone App (NETFX_CORE)

Some interfaces, such as

, cause conflicts when submitting to the Windows Store App. Therefore, when using NETFX_CORE, please refrain from using such constructs as
and refer to the UniRx components by their short name, without adding the namespace. This solves the conflicts.

DLL Separation

If you want to pre-build UniRx, you can build own dll. clone project and open

, you can see
, it is fullset separated project of UniRx. You should define compile symbol like
or other platform symbol. We can not provides pre-build binary to release page, asset store because compile symbol is different each other.

UPM Package

After Unity 2019.3.4f1, Unity 2020.1a21, that support path query parameter of git package. You can add
to Package Manager

or add

"com.neuecc.unirx": ""


UniRx API documents.

The home of ReactiveX. Introduction, All operators are illustrated with graphical marble diagrams, there makes easy to understand. And UniRx is official ReactiveX Languages.

A great online tutorial and eBook.

Many videos, slides and documents for Rx.NET.

Intro slide by @torisoup

Intro slide and sample game by @Xerios

How to integrate with PlayFab API

Help & Contribute

Support thread on the Unity forum. Ask me any question -

Become a backer, Sponsored, one time donation are welcome, we're using Open Collective - UniRx

We welcome any contributions, be they bug reports, requests or pull request.
Please consult and submit your reports or requests on GitHub issues.
Source code is available in


Author's other Unity + LINQ Assets

LINQ to GameObject is a group of GameObject extensions for Unity that allows traversing the hierarchy and appending GameObject to it like LINQ to XML. It's free and opensource on GitHub.

Author Info

Yoshifumi Kawai(a.k.a. neuecc) is a software developer in Japan.
Currently founded consulting company New World, Inc.
He is awarding Microsoft MVP for Visual C# since 2011.

Blog: (English)
Blog: (Japanese)
Twitter: (Japanese)


This library is under the MIT License.

Some code is borrowed from Rx.NET and mono/mcs.

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.