Need help with MathParser.org-mXparser?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

mariuszgromada
627 Stars 116 Forks Other 453 Commits 38 Opened issues

Description

Math Parser Java Android C# .NET/MONO (.NET Framework, .NET Core, .NET Standard, .NET PCL, Xamarin.Android, Xamarin.iOS) CLS Library - a super easy, rich and flexible mathematical expression parser (expression evaluator, expression provided as plain text / strings) for JAVA and C#. Main features: rich built-in library of operators, constants, math functions, user defined: arguments, functions, recursive functions and general recursion (direct / indirect). Additionally parser provides grammar and internal syntax checking.

Services available

!
?

Need anything else?

Contributors list

Package installation

Nuget

PM> Install-Package MathParser.org-mXparser -Version 4.4.2

Maven

org.mariuszgromada.math
MathParser.org-mXparser
4.4.2

Scalar Scientific Calculator, Charts & Scripts - my new project

Scalar-Lite

Scalar in action

Scalar-Lite

Scalar - Free version

Scalar Pro - Full paid version

MathParser.org-mXparser

mXparser icon

01-mXparser-calc

mXparser - optional donation

paypall-donation

mXparser - a super easy, rich and highly flexible Mathematical Expression Parser (Math Parser, Expression Evaluator) library for JAVA, Android and C# .NET.

### 15.10.2020: first 500000 downloads!
### 20.12.2019: first 250000 downloads!
### 01.01.2019: first 100000 downloads!
### 01.08.2018: first 60000 downloads!
### 20.11.2017: first 20000 downloads!
### 01.09.2017: first 15000 downloads!
### 04.05.2017: first 10000 downloads!
### 31.03.2016: first 1000 downloads!

02-mXparser-sin.gif

mXparser is a highly flexible parser of mathematical expressions provided as text. Software delivers easy to use API for JAVA and C# .NET.

Supported frameworks

mXparser frameworks - JAVA: 6+ - Android - tested with mxparser compiled using jdk 1.7 - .NET Framework (2+) / MONO CLS - .NET Core: 1+ - .NET Standard: 1+ - .NET PCL - Xamarin

03-mXparser-sum.gif

JAVA intro

mXparser demo

C# intro

mXparser demo - csharp

Tutorial

mXparser tutorial

>>> Click to learn from examples <<<

Main functionalities:

High flexibility functionalities

Project documentation

- mXparser - API (english)

- mXparser - WIKI (english)

- mXparser - Tutorial (english)

- MathSpace.pl - site about math with mXparser examples (polish)

- MathParser.org - site about mXparser (english)

paypal

mXparser in nutshell

You want simple calculator...

calc

Expression e = new Expression("2+3");
e.calculate();

:+1:

A calculator supporting parenthesis...

parenth

Expression e = new Expression("2+(3-5)^2");
e.calculate();

:+1:

You care about predefined constants...

const

Expression e = new Expression("2*pi");
e.calculate();

:+1:

You need to define your own constants...

const-user

Constant tau = new Constant("tau = 2*pi");
Expression e = new Expression("3*tau", tau);
e.calculate();

:+1:

You enjoy using many built-in functions...

sinx

Expression e = new Expression("sin(2*pi)");
e.calculate();

:+1:

You do not limit yourself to unary functions...

fun-variadic

Expression e = new Expression("gcd(2,5,10,30)");
e.calculate();

:+1:

What about user defined arguments...

arg-free

Argument x = new Argument("x = 5");
Expression e = new Expression("sin(x)");
e.calculate();

:+1:

You are considering dependent arguments...

arg-dep

Argument x = new Argument("x = 5");
Argument y = new Argument("y = 2*x", x);
Expression e = new Expression("sin(y)", y);
e.calculate();

:+1:

You need to apply some logic...

if-then

Argument x = new Argument("x = 5");
Expression e = new Expression("if(sin(x) > 5, 1, 0)", x);
e.calculate();

:+1:

Yes, you are right, there is a support for Boolean algebra!

true-false

Expression e = new Expression("5=6");
e.calculate();

:+1:

And for binary relations as well!

Expression e = new Expression("5 <= 6");
e.calculate();

:+1:

mXparser is cool! But this is only the beginning, we are just warming up!

You want to play with iterated operators...

sum

Expression e = new Expression("sum(i, 1, 10, 2*i^2 + pi)");
e.calculate();

:+1:

You want to iterate differently by not necessarily whole numbes...

prod

Expression e = new Expression("prod(i, 1, 5, i, 0.5)");
e.calculate();

:+1:

You want to have more fun with math...

Argument x = new Argument("x = pi/2");
Expression e20 = new Expression("sum(n,0,10,(-1)^n*(x^(2*n+1))/(2*n+1)!)", x);
e.calculate();

:+1:

You still want more fun with calculus operations, i.e. differentiation...

der

Argument x = new Argument("x = pi/2");
Expression e = new Expression("cos(x)-der(sin(x), x)", x);
e.calculate();

:+1:

And definite integrals as well...

int

Expression e = new Expression("2*int(sqrt(1-x^2), x, -1, 1)");
e.calculate();

:+1:

mXparser is even cooler! It is time to ask about ...

user defined functions...

fun-user

Function f = new Function("f(x,y) = sin(x) + cos(y)");
f.calculate(1,2);
Expression e = new Expression("f(1,2) - 10", f);
e.calculate();

:+1:

Recursion is your desire...

recur

Function f = new Function("f(n) = if( n>0, n*f(n-1), 1)");
f.calculate()

:+1:

Any kind of recursion...

Function Cnk = new Function("Cnk(n,k) = if(k>0, if(k

:+1:

If anything above matches you then mXparser is a good choce! mXparser is freely distributed under Simplified BSD licence, but still you can give credits to the author, and even donate if you wish :+1:

paypal

mXparser can interact with end users as it supports syntax checking.

syntax

Expression e = new Expression("2+1/a");
e.checkSyntax();
mXparser.consolePrintln(e.getErrorMessage());

Built-in tokens

Number format

|Key word|Category|Description|Example|Since| |---|---|---|---|---| |Number|Decimal Number|Decimal number|1, 1.5, -2.3|1.0| |Number|Decimal Number|Decimal number - scientific notation|1.2e10, -2.4e-10, 2.3E+10|4.0| |Number|Binary Number|Binary number - number literal| b.10101, B.10101, b2.10010|4.1| |Number|Octal Number|Octal number - number literal| o.1027, O.1027, b8.1027|4.1| |Number|Hexadecimal Number|Hexadecimal number - number literal| h.12fE, H.12fE, b16.12fE|4.1| |Number|Unary Number|Unary number - number literal| b1.111 , B1.111|4.1| |Number|Base 1-36|Base 1-36 number - number literal| bN.xxxx , BN.xxxx|4.1| |Number|Fraction|Number literal as fraction| 12 , 234, 172345, 345_172 |4.3|

Operators

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | + | Operator | Addition | a + b | 1.0 | | - | Operator | Subtraction | a - b | 1.0 | | * | Operator | Multiplication | a * b | 1.0 | | / | Operator | Division | a / b | 1.0 | | ^ | Operator | Exponentiation | a^b | 1.0 | | ! | Operator | Factorial | n! | 1.0 | | # | Operator | Modulo function | a # b | 1.0 | | % | Operator | Percentage | n% | 4.1 | | ^^ | Operator | Tetration | a^^b | 4.3 |

Boolean Operators

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | & |Boolean Operator|Logical conjunction (AND)|p & q|1.0| | && |Boolean Operator|Logical conjunction (AND)|p && q|1.0| | /\ |Boolean Operator|Logical conjunction (AND)|p /\ q|1.0| | ~& |Boolean Operator|NAND - Sheffer stroke|p ~& q|1.0| | ~&& |Boolean Operator|NAND - Sheffer stroke|p ~&& q|1.0| | ~/\ |Boolean Operator|NAND - Sheffer stroke|p ~/\ q|1.0| | | |Boolean Operator|Logical disjunction (OR)|p | q|1.0| | || |Boolean Operator|Logical disjunction (OR)|p || q|1.0| | \/ |Boolean Operator|Logical disjunction (OR)|p \/ q|1.0| | ~| |Boolean Operator|Logical NOR|p ~| q|1.0| | ~|| |Boolean Operator|Logical NOR|p ~|| q|1.0| | ~\/ |Boolean Operator|Logical NOR|p ~\/ q|1.0| | (+) |Boolean Operator|Exclusive or (XOR)|p (+) q|1.0| | --> |Boolean Operator|Implication (IMP)|p --> q|1.0| | <-- |Boolean Operator|Converse implication (CIMP)|p <-- q|1.0| | -/> |Boolean Operator|Material nonimplication (NIMP)|p -/> q|1.0| | </- |Boolean Operator|Converse nonimplication (CNIMP)|p </- q|1.0| | <-> |Boolean Operator|Logical biconditional (EQV)|p <-> q|1.0| | ~ |Boolean Operator|Negation|~p|1.0|

Bitwise Operators

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | @~ |Bitwise Operator|Bitwise unary complement|@~10|4.0| | @& |Bitwise Operator|Bitwise AND|10 @& 2|4.0| | @^ |Bitwise Operator|Bitwise exclusive OR|10 @^ 2|4.0| | @| |Bitwise Operator|Bitwise inclusive OR|10 @| 2|4.0| | @<< |Bitwise Operator|Signed left shift|10 @<< 2|4.0| | @>> |Bitwise Operator|Signed right shift|10 @>> 2|4.0|

Binary Relations

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | = |Binary Relation|Equality|a = b|1.0| | == |Binary Relation|Equality|a == b|1.0| | <> |Binary Relation|Inequation|a <> b|1.0| | ~= |Binary Relation|Inequation|a ~= b|1.0| | != |Binary Relation|Inequation|a != b|1.0| | < |Binary Relation|Lower than|a < b|1.0| | > |Binary Relation|Greater than|a > b|1.0| | <= |Binary Relation|Lower or equal|a <= b|1.0| | >= |Binary Relation|Greater or equal|a >= b|1.0|

Unary Functions

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | sin | Unary Function | Trigonometric sine function | sin(x) | 1.0 | | cos | Unary Function | Trigonometric cosine function | cos(x) | 1.0 | | tg | Unary Function | Trigonometric tangent function | tg(x) | 1.0 | | tan | Unary Function | Trigonometric tangent function | tan(x) | 1.0 | | ctg | Unary Function | Trigonometric cotangent function | ctg(x) | 1.0 | | cot | Unary Function | Trigonometric cotangent function | cot(x) | 1.0 | | ctan | Unary Function | Trigonometric cotangent function | ctan(x) | 1.0 | | sec | Unary Function | Trigonometric secant function | sec(x) | 1.0 | | csc | Unary Function | Trigonometric cosecant function | csc(x) | 1.0 | | cosec | Unary Function | Trigonometric cosecant function | cosec(x) | 1.0 | | asin | Unary Function | Inverse trigonometric sine function | asin(x) | 1.0 | | arsin | Unary Function | Inverse trigonometric sine function | arsin(x) | 1.0 | | arcsin | Unary Function | Inverse trigonometric sine function | arcsin(x) | 1.0 | | acos | Unary Function | Inverse trigonometric cosine function | acos(x) | 1.0 | | arcos | Unary Function | Inverse trigonometric cosine function | arcos(x) | 1.0 | | arccos | Unary Function | Inverse trigonometric cosine function | arccos(x) | 1.0 | | atg | Unary Function | Inverse trigonometric tangent function | atg(x) | 1.0 | | atan | Unary Function | Inverse trigonometric tangent function | atan(x) | 1.0 | | arctg | Unary Function | Inverse trigonometric tangent function | arctg(x) | 1.0 | | arctan | Unary Function | Inverse trigonometric tangent function | arctan(x) | 1.0 | | actg | Unary Function | Inverse trigonometric cotangent function | actg(x) | 1.0 | | acot | Unary Function | Inverse trigonometric cotangent function | acot(x) | 1.0 | | actan | Unary Function | Inverse trigonometric cotangent function | actan(x) | 1.0 | | arcctg | Unary Function | Inverse trigonometric cotangent function | arcctg(x) | 1.0 | | arccot | Unary Function | Inverse trigonometric cotangent function | arccot(x) | 1.0 | | arcctan | Unary Function | Inverse trigonometric cotangent function | arcctan(x) | 1.0 | | ln | Unary Function | Natural logarithm function (base e) | ln(x) | 1.0 | | log2 | Unary Function | Binary logarithm function (base 2) | log2(x) | 1.0 | | log10 | Unary Function | Common logarithm function (base 10) | log10(x) | 1.0 | | rad | Unary Function | Degrees to radians function | rad(x) | 1.0 | | exp | Unary Function | Exponential function | exp(x) | 1.0 | | sqrt | Unary Function | Squre root function | sqrt(x) | 1.0 | | sinh | Unary Function | Hyperbolic sine function | sinh(x) | 1.0 | | cosh | Unary Function | Hyperbolic cosine function | cosh(x) | 1.0 | | tgh | Unary Function | Hyperbolic tangent function | tgh(x) | 1.0 | | tanh | Unary Function | Hyperbolic tangent function | tanh(x) | 1.0 | | coth | Unary Function | Hyperbolic cotangent function | coth(x) | 1.0 | | ctgh | Unary Function | Hyperbolic cotangent function | ctgh(x) | 1.0 | | ctanh | Unary Function | Hyperbolic cotangent function | ctanh(x) | 1.0 | | sech | Unary Function | Hyperbolic secant function | sech(x) | 1.0 | | csch | Unary Function | Hyperbolic cosecant function | csch(x) | 1.0 | | cosech | Unary Function | Hyperbolic cosecant function | cosech(x) | 1.0 | | deg | Unary Function | Radians to degrees function | deg(x) | 1.0 | | abs | Unary Function | Absolut value function | abs(x) | 1.0 | | sgn | Unary Function | Signum function | sgn(x) | 1.0 | | floor | Unary Function | Floor function | floor(x) | 1.0 | | ceil | Unary Function | Ceiling function | ceil(x) | 1.0 | | not | Unary Function | Negation function | not(x) | 1.0 | | asinh | Unary Function | Inverse hyperbolic sine function | asinh(x) | 1.0 | | arsinh | Unary Function | Inverse hyperbolic sine function | arsinh(x) | 1.0 | | arcsinh | Unary Function | Inverse hyperbolic sine function | arcsinh(x) | 1.0 | | acosh | Unary Function | Inverse hyperbolic cosine function | acosh(x) | 1.0 | | arcosh | Unary Function | Inverse hyperbolic cosine function | arcosh(x) | 1.0 | | arccosh | Unary Function | Inverse hyperbolic cosine function | arccosh(x) | 1.0 | | atgh | Unary Function | Inverse hyperbolic tangent function | atgh(x) | 1.0 | | atanh | Unary Function | Inverse hyperbolic tangent function | atanh(x) | 1.0 | | arctgh | Unary Function | Inverse hyperbolic tangent function | arctgh(x) | 1.0 | | arctanh | Unary Function | Inverse hyperbolic tangent function | arctanh(x) | 1.0 | | acoth | Unary Function | Inverse hyperbolic cotangent function | acoth(x) | 1.0 | | actgh | Unary Function | Inverse hyperbolic cotangent function | actgh(x) | 1.0 | | actanh | Unary Function | Inverse hyperbolic cotangent function | actanh(x) | 1.0 | | arcoth | Unary Function | Inverse hyperbolic cotangent function | arcoth(x) | 1.0 | | arccoth | Unary Function | Inverse hyperbolic cotangent function | arccoth(x) | 1.0 | | arcctgh | Unary Function | Inverse hyperbolic cotangent function | arcctgh(x) | 1.0 | | arcctanh | Unary Function | Inverse hyperbolic cotangent function | arcctanh(x) | 1.0 | | asech | Unary Function | Inverse hyperbolic secant function | asech(x) | 1.0 | | arsech | Unary Function | Inverse hyperbolic secant function | arsech(x) | 1.0 | | arcsech | Unary Function | Inverse hyperbolic secant function | arcsech(x) | 1.0 | | acsch | Unary Function | Inverse hyperbolic cosecant function | acsch(x) | 1.0 | | arcsch | Unary Function | Inverse hyperbolic cosecant function | arcsch(x) | 1.0 | | arccsch | Unary Function | Inverse hyperbolic cosecant function | arccsch(x) | 1.0 | | acosech | Unary Function | Inverse hyperbolic cosecant function | acosech(x) | 1.0 | | arcosech | Unary Function | Inverse hyperbolic cosecant function | arcosech(x) | 1.0 | | Sa | Unary Function | Sinc function (normalized) | Sa(x) | 1.0 | | sinc | Unary Function | Sinc function (normalized) | sinc(x) | 1.0 | | Sinc | Unary Function | Sinc function (unnormalized) | Sinc(x) | 1.0 | | Bell | Unary Function | Bell number | Bell(n) | 1.0 | | Luc | Unary Function | Lucas number | Luc(n) | 1.0 | | Fib | Unary Function | Fibonacci number | Fib(n) | 1.0 | | harm | Unary Function | Harmonic number | harm(n) | 1.0 | | ispr | Unary Function | Prime number test (is number a prime?) | ispr(n) | 2.3 | | Pi | Unary Function | Prime-counting function - Pi(x) | Pi(n) | 2.3 | | Ei | Unary Function | Exponential integral function (non-elementary special function) - usage example: Ei(x) | Ei(x) | 2.3 | | li | Unary Function | Logarithmic integral function (non-elementary special function) - usage example: li(x) | li(x) | 2.3 | | Li | Unary Function | Offset logarithmic integral function (non-elementary special function) - usage example: Li(x) | Li(x) | 2.3 | | erf | Unary Function | Gauss error function (non-elementary special function) - usage example: 2 + erf(x) | erf(x) | 3.0 | | erfc | Unary Function | Gauss complementary error function (non-elementary special function) - usage example: 1 - erfc(x) | erfc(x) | 3.0 | | erfInv | Unary Function | Inverse Gauss error function (non-elementary special function) - usage example: erfInv(x) | erfInv(x) | 3.0 | | erfcInv | Unary Function | Inverse Gauss complementary error function (non-elementary special function) - usage example: erfcInv(x) | erfcInv(x) | 3.0 | | ulp | Unary Function | Unit in The Last Place - ulp(0.1) | ulp(x) | 3.0 | | isNaN | Unary Function | Returns true = 1 if value is a Not-a-Number (NaN), false = 0 otherwise - usage example: isNaN(x) | isNaN(x) | 4.1 | | ndig10 | Unary Function | Number of digits in numeral system with base 10 | ndig10(x) | 4.1 | | nfact | Unary Function | Prime decomposition - number of distinct prime factors | nfact(x) | 4.1 | | arcsec | Unary Function | Inverse trigonometric secant | arcsec(x) | 4.1 | | Gamma | Unary Function | Gamma special function Γ(s) | Gamma(x) | 4.3 | | LambW0(x) | Unary Function | Lambert-W special function, principal branch 0, also called the omega function or product logarithm | LambW0(x) | 4.3 | | LambW1(x) | Unary Function | Lambert-W special function, branch -1, also called the omega function or product logarithm | LambW1(x) | 4.3 | | sgnGamma | Unary Function | Signum of Gamma special function, Γ(x) | sgnGamma(x) | 4.3 | | logGamma | Unary Function | Log Gamma special function, lnΓ(x) | logGamma(x) | 4.3 | | diGamma | Unary Function | Digamma function as the logarithmic derivative of the Gamma special function, ψ(x) | diGamma(x) | 4.3 |

Binary Functions

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | log | Binary Function | Logarithm function | log(a, b) | 1.0 | | mod | Binary Function | Modulo function | mod(a, b) | 1.0 | | C | Binary Function | Binomial coefficient function | C(n, k) | 1.0 | | Bern | Binary Function | Bernoulli numbers | Bern(m, n) | 1.0 | | Stirl1 | Binary Function | Stirling numbers of the first kind | Stirl1(n, k) | 1.0 | | Stirl2 | Binary Function | Stirling numbers of the second kind | Stirl2(n, k) | 1.0 | | Worp | Binary Function | Worpitzky number | Worp(n, k) | 1.0 | | Euler | Binary Function | Euler number | Euler(n, k) | 1.0 | | KDelta | Binary Function | Kronecker delta | KDelta(i, j) | 1.0 | | EulerPol | Binary Function | EulerPol | EulerPol | 1.0 | | Harm | Binary Function | Harmonic number | Harm(x, n) | 1.0 | | rUni | Binary Function | Random variable - Uniform continuous distribution U(a,b), usage example: 2rUni(2,10) | rUni(a, b) | 3.0 | | rUnid | Binary Function | Random variable - Uniform discrete distribution U{a,b}, usage example: 2rUnid(2,100) | rUnid(a, b) | 3.0 | | round | Binary Function | Half-up rounding, usage examples: round(2.2, 0) = 2, round(2.6, 0) = 3, round(2.66,1) = 2.7 | round(x, n) | 3.0 | | rNor | Binary Function | Random variable - Normal distribution N(m,s) m - mean, s - stddev, usage example: 3*rNor(0,1) | rNor(mean, stdv) | 3.0 | | ndig | Binary Function | Number of digits representing the number in numeral system with given base | ndig(number, base) | 4.1 | | dig10 | Binary Function | Digit at position 1 ... n (left -> right) or 0 ... -(n-1) (right -> left) - base 10 numeral system | dig10(num, pos) | 4.1 | | factval | Binary Function | Prime decomposition - factor value at position between 1 ... nfact(n) - ascending order by factor value | factval(number, factorid) | 4.1 | | factexp | Binary Function | Prime decomposition - factor exponent / multiplicity at position between 1 ... nfact(n) - ascending order by factor value | factexp(number, factorid) | 4.1 | | root | Binary Function | N-th order root of a number | root(rootorder, number) | 4.1 | | GammaL | Binary Function | Lower incomplete gamma special function, γ(s,x) | GammaL(s,x) | 4.3 | | GammaU | Binary Function | Upper incomplete Gamma special function, Γ(s,x) | GammaU(s,x) | 4.3 | | GammaP | Binary Function | Lower regularized P gamma special function, P(s,x) | GammaP(s,x) | 4.3 | | GammaRegL | Binary Function | Lower regularized P gamma special function, P(s,x) | GammaRegL(s,x) | 4.3 | | GammaQ | Binary Function | Upper regularized Q Gamma special function, Q(s,x) | GammaQ(s,x) | 4.3 | | GammaRegU | Binary Function | Upper regularized Q Gamma special function, Q(s,x) | GammaRegU(s,x) | 4.3 | | Beta | Binary Function | The Beta special function B(x,y), also called the Euler integral of the first kind | Beta(x,y) | 4.3 | | logBeta | Binary Function | The Log Beta special function ln B(x,y), also called the Log Euler integral of the first kind, ln B(x,y) | logBeta(x,y) | 4.3 |

3-args Functions

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | if | 3-args Function | If function | if( cond, expr-if-true, expr-if-false ) | 1.0 | | chi | 3-args Function | Characteristic function for x in (a,b) | chi(x, a, b) | 1.0 | | CHi | 3-args Function | Characteristic function for x in [a,b] | CHi(x, a, b) | 1.0 | | Chi | 3-args Function | Characteristic function for x in [a,b) | Chi(x, a, b) | 1.0 | | cHi | 3-args Function | Characteristic function for x in (a,b] | cHi(x, a, b) | 1.0 | | pUni | 3-args Function | Probability distribution function - Uniform continuous distribution U(a,b) | pUni(x, a, b) | 3.0 | | cUni | 3-args Function | Cumulative distribution function - Uniform continuous distribution U(a,b) | cUni(x, a, b) | 3.0 | | qUni | 3-args Function | Quantile function (inverse cumulative distribution function) - Uniform continuous distribution U(a,b) | qUni(q, a, b) | 3.0 | | pNor | 3-args Function | Probability distribution function - Normal distribution N(m,s) | pNor(x, mean, stdv) | 3.0 | | cNor | 3-args Function | Cumulative distribution function - Normal distribution N(m,s) | cNor(x, mean, stdv) | 3.0 | | qNor | 3-args Function | Quantile function (inverse cumulative distribution function) | qNor(q, mean, stdv) | 3.0 | | dig | 3-args Function | Digit at position 1 ... n (left -> right) or 0 ... -(n-1) (right -> left) - numeral system with given base | dig(num, pos, base) | 4.1 | | BetaInc | 3-args Function | The incomplete beta special function B(x; a, b), also called the incomplete Euler integral of the first kind | BetaInc(x,a,b) | 4.3 | | BetaI | 3-args Function | The regularized incomplete beta (or regularized beta) special function I(x; a, b), also called the regularized incomplete Euler integral of the first kind | BetaI(x,a,b) | 4.3 | | BetaReg | 3-args Function | The regularized incomplete beta (or regularized beta) special function I(x; a, b), also called the regularized incomplete Euler integral of the first kind | BetaReg(x,a,b) | 4.3 |

Variadic Functions

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | iff | Variadic Function | If function | iff( cond-1, expr-1; ... ; cond-n, expr-n ) | 1.0 | | min | Variadic Function | Minimum function | min(a1, ..., an) | 1.0 | | max | Variadic Function | Maximum function | max(a1, ..., an) | 1.0 | | ConFrac | Variadic Function | Continued fraction | ConFrac(a1, ..., an) | 1.0 | | ConPol | Variadic Function | Continued polynomial | ConPol(a1, ..., an) | 1.0 | | gcd | Variadic Function | Greatest common divisor | gcd(a1, ..., an) | 1.0 | | lcm | Variadic Function | Least common multiple | lcm(a1, ..., an) | 1.0 | | add | Variadic Function | Summation operator | add(a1, ..., an) | 2.4 | | multi | Variadic Function | Multiplication | multi(a1, ..., an) | 2.4 | | mean | Variadic Function | Mean / average value | mean(a1, ..., an) | 2.4 | | var | Variadic Function | Bias-corrected sample variance | var(a1, ..., an) | 2.4 | | std | Variadic Function | Bias-corrected sample standard deviation | std(a1, ..., an) | 2.4 | | rList | Variadic Function | Random number from given list of numbers | rList(a1, ..., an) | 3.0 | | coalesce | Variadic Function | Returns the first non-NaN value | coalesce(a1, ..., an) | 4.1 | | or | Variadic Function | Logical disjunction (OR) - variadic | or(a1, ..., an) | 4.1 | | and | Variadic Function | Logical conjunction (AND) - variadic | and(a1, ..., an) | 4.1 | | xor | Variadic Function | Exclusive or (XOR) - variadic | xor(a1, ..., an) | 4.1 | | argmin | Variadic Function | Arguments / indices of the minima | argmin(a1, ..., an) | 4.1 | | argmax | Variadic Function | Arguments / indices of the maxima | argmax(a1, ..., an) | 4.1 | | med | Variadic Function | The sample median | med(a1, ..., an) | 4.1 | | mode | Variadic Function | Mode - the value that appears most often | mode(a1, ..., an) | 4.1 | | base | Variadic Function | Returns number in given numeral system base represented by list of digits | base(b, d1, ..., dn) | 4.1 | | ndist | Variadic Function | Number of distinct values | ndist(v1, ..., vn) | 4.1 |

Calculus Operators / Iterated Operators

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | sum | Calculus Operator | Summation operator - SIGMA | sum( i, from, to, expr , ) | 1.0 | | prod | Calculus Operator | Product operator - PI | prod( i, from, to, expr , ) | 1.0 | | int | Calculus Operator | Definite integral operator | int( expr, arg, from, to ) | 1.0 | | der | Calculus Operator | Derivative operator | der( expr, arg, ) | 1.0 | | der- | Calculus Operator | Left derivative operator | der-( expr, arg, ) | 1.0 | | der+ | Calculus Operator | Right derivative operator | der+( expr, arg, ) | 1.0 | | dern | Calculus Operator | n-th derivative operator | dern( expr, n, arg ) | 1.0 | | diff | Calculus Operator | Forward difference operator | diff( expr, arg, ) | 1.0 | | difb | Calculus Operator | Backward difference operator | difb( expr, arg, ) | 1.0 | | avg | Calculus Operator | Average operator | avg( i, from, to, expr , ) | 2.4 | | vari | Calculus Operator | Bias-corrected sample variance operator | vari( i, from, to, expr , ) | 2.4 | | stdi | Calculus Operator | Bias-corrected sample standard deviation operator | stdi( i, from, to, expr , ) | 2.4 | | mini | Calculus Operator | Minimum value | mini( i, from, to, expr , ) | 2.4 | | maxi | Calculus Operator | Maximum value | maxi( i, from, to, expr , ) | 2.4 | | solve | Calculus Operator | f(x) = 0 equation solving, function root finding | solve( expr, a, b ) | 4.0 |

Random Variables

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | [Uni] |Random Variable|Random variable - Uniform continuous distribution U(0,1), usage example: 2[Uni]|2[Uni]|3.0| | [Int] |Random Variable|Random variable - random integer - usage example sin( 3[Int] )|[Int]3|3.0| | [Int1] |Random Variable|Random variable - random integer - Uniform discrete distribution U{-10^1, 10^1} - usage example sin( 3[Int1] )|2[Int1]|3.0| | [Int2] |Random Variable|Random variable - random integer - Uniform discrete distribution U{-10^2, 10^2} - usage example sin( 3[Int2] )|[Int2]3|3.0| | [Int3] |Random Variable|Random variable - random integer - Uniform discrete distribution U{-10^3, 10^3} - usage example sin( 3[Int3] )|2[Int3]|3.0| | [Int4] |Random Variable|Random variable - random integer - Uniform discrete distribution U{-10^4, 10^4} - usage example sin( 3[Int4] )|[Int4]3|3.0| | [Int5] |Random Variable|Random variable - random integer - Uniform discrete distribution U{-10^5, 10^5} - usage example sin( 3[Int5] )|2[Int5]|3.0| | [Int6] |Random Variable|Random variable - random integer - Uniform discrete distribution U{-10^6, 10^6} - usage example sin( 3[Int6] )|[Int6]3|3.0| | [Int7] |Random Variable|Random variable - random integer - Uniform discrete distribution U{-10^7, 10^7} - usage example sin( 3[Int7] )|2[Int7]|3.0| | [Int8] |Random Variable|Random variable - random integer - Uniform discrete distribution U{-10^8, 10^8} - usage example sin( 3[Int8] )|[Int8]3|3.0| | [Int9] |Random Variable|Random variable - random integer - Uniform discrete distribution U{-10^9, 10^9} - usage example sin( 3[Int9] )|2[Int9]|3.0| | [nat] |Random Variable|Random variable - random natural number including 0 - usage example sin( 3[nat] )|[nat]3|3.0| | [nat1] |Random Variable|Random variable - random natural number including 0 - Uniform discrete distribution U{0, 10^1} - usage example sin( 3[nat1] )|2[nat1]|3.0| | [nat2] |Random Variable|Random variable - random natural number including 0 - Uniform discrete distribution U{0, 10^2} - usage example sin( 3[nat2] )|[nat2]3|3.0| | [nat3] |Random Variable|Random variable - random natural number including 0 - Uniform discrete distribution U{0, 10^3} - usage example sin( 3[nat3] )|2[nat3]|3.0| | [nat4] |Random Variable|Random variable - random natural number including 0 - Uniform discrete distribution U{0, 10^4} - usage example sin( 3[nat4] )|[nat4]3|3.0| | [nat5] |Random Variable|Random variable - random natural number including 0 - Uniform discrete distribution U{0, 10^5} - usage example sin( 3[nat5] )|2[nat5]|3.0| | [nat6] |Random Variable|Random variable - random natural number including 0 - Uniform discrete distribution U{0, 10^6} - usage example sin( 3[nat6] )|[nat6]3|3.0| | [nat7] |Random Variable|Random variable - random natural number including 0 - Uniform discrete distribution U{0, 10^7} - usage example sin( 3[nat7] )|2[nat7]|3.0| | [nat8] |Random Variable|Random variable - random natural number including 0 - Uniform discrete distribution U{0, 10^8} - usage example sin( 3[nat8] )|[nat8]3|3.0| | [nat9] |Random Variable|Random variable - random natural number including 0 - Uniform discrete distribution U{0, 10^9} - usage example sin( 3[nat9] )|2[nat9]|3.0| | [Nat] |Random Variable|Random variable - random natural number - usage example sin( 3[Nat] )|[Nat]3|3.0| | [Nat1] |Random Variable|Random variable - random natural number - Uniform discrete distribution U{1, 10^1} - usage example sin( 3[Nat1] )|2[Nat1]|3.0| | [Nat2] |Random Variable|Random variable - random natural number - Uniform discrete distribution U{1, 10^2} - usage example sin( 3[Nat2] )|[Nat2]3|3.0| | [Nat3] |Random Variable|Random variable - random natural number - Uniform discrete distribution U{1, 10^3} - usage example sin( 3[Nat3] )|2[Nat3]|3.0| | [Nat4] |Random Variable|Random variable - random natural number - Uniform discrete distribution U{1, 10^4} - usage example sin( 3[Nat4] )|[Nat4]3|3.0| | [Nat5] |Random Variable|Random variable - random natural number - Uniform discrete distribution U{1, 10^5} - usage example sin( 3[Nat5] )|2[Nat5]|3.0| | [Nat6] |Random Variable|Random variable - random natural number - Uniform discrete distribution U{1, 10^6} - usage example sin( 3[Nat6] )|[Nat6]3|3.0| | [Nat7] |Random Variable|Random variable - random natural number - Uniform discrete distribution U{1, 10^7} - usage example sin( 3[Nat7] )|2[Nat7]|3.0| | [Nat8] |Random Variable|Random variable - random natural number - Uniform discrete distribution U{1, 10^8} - usage example sin( 3[Nat8] )|[Nat8]3|3.0| | [Nat9] |Random Variable|Random variable - random natural number - Uniform discrete distribution U{1, 10^9} - usage example sin( 3[Nat9] )|2[Nat9]|3.0| | [Nor] |Random Variable|Random variable - Normal distribution N(0,1) - usage example cos( 3[Nor]+1 )|[Nor]3|3.0|

Mathematical Constants

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | pi |Constant Value|Pi, Archimedes' constant or Ludolph's number|2pi|1.0| | e |Constant Value|Napier's constant, or Euler's number, base of Natural logarithm|e3|1.0| | [gam] |Constant Value|Euler-Mascheroni constant|2[gam]|1.0| | [phi] |Constant Value|Golden ratio|[phi]3|1.0| | [PN] |Constant Value|Plastic constant|2[PN]|1.0| | [B] |Constant Value|Embree-Trefethen constant|[B]3|1.0| | [F'd] |Constant Value|Feigenbaum constant alfa|2[F'd]|1.0| | [F'a] |Constant Value|Feigenbaum constant delta|[F'a]3|1.0| | [C2] |Constant Value|Twin prime constant|2[C2]|1.0| | [M1] |Constant Value|Meissel-Mertens constant|[M1]3|1.0| | [B2] |Constant Value|Brun's constant for twin primes|2[B2]|1.0| | [B4] |Constant Value|Brun's constant for prime quadruplets|[B4]3|1.0| | [BN'L] |Constant Value|De Bruijn-Newman constant|2[BN'L]|1.0| | [Kat] |Constant Value|Catalan's constant|[Kat]3|1.0| | [K] |Constant Value|Landau-Ramanujan constant|2[K]|1.0| | [K.] |Constant Value|Viswanath's constant|[K.]3|1.0| | [B'L] |Constant Value|Legendre's constant|2[B'L]|1.0| | [RS'm] |Constant Value|Ramanujan-Soldner constant|[RS'm]3|1.0| | [EB'e] |Constant Value|Erdos-Borwein constant|2[EB'e]|1.0| | [Bern] |Constant Value|Bernstein's constant|[Bern]3|1.0| | [GKW'l] |Constant Value|Gauss-Kuzmin-Wirsing constant|2[GKW'l]|1.0| | [HSM's] |Constant Value|Hafner-Sarnak-McCurley constant|[HSM's]3|1.0| | [lm] |Constant Value|Golomb-Dickman constant|2[lm]|1.0| | [Cah] |Constant Value|Cahen's constant|[Cah]3|1.0| | [Ll] |Constant Value|Laplace limit|2[Ll]|1.0| | [AG] |Constant Value|Alladi-Grinstead constant|[AG]3|1.0| | [L] |Constant Value|Lengyel's constant|2[L]|1.0| | [L.] |Constant Value|Levy's constant|[L.]3|1.0| | [Dz3] |Constant Value|Apery's constant|2[Dz3]|1.0| | [A3n] |Constant Value|Mills' constant|[A3n]3|1.0| | [Bh] |Constant Value|Backhouse's constant|2[Bh]|1.0| | [Pt] |Constant Value|Porter's constant|[Pt]3|1.0| | [L2] |Constant Value|Lieb's square ice constant|2[L2]|1.0| | [Nv] |Constant Value|Niven's constant|[Nv]3|1.0| | [Ks] |Constant Value|Sierpinski's constant|2[Ks]|1.0| | [Kh] |Constant Value|Khinchin's constant|[Kh]3|1.0| | [FR] |Constant Value|Fransen-Robinson constant|2[FR]|1.0| | [La] |Constant Value|Landau's constant|[La]3|1.0| | [P2] |Constant Value|Parabolic constant|2[P2]|1.0| | [Om] |Constant Value|Omega constant|[Om]3|1.0| | [MRB] |Constant Value|MRB constant|2[MRB]|1.0| | [li2] |Constant Value|li(2) - logarithmic integral function at x=2|[li2]3|2.3| | [EG] |Constant Value|Gompertz constant|2*[EG]|2.3| | [true] | Constant Value | Boolean True represented as double, [true] = 1 | [true] | 4.1 | | [false] | Constant Value | Boolean False represented as double, [false] = 0 | [false] | 4.1 | | [NaN] | Constant Value | Not-a-Number | [NaN] | 4.1 |

Physical Constant

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | [c] |Constant Value|<Physical Constant> Light speed in vacuum m/s|[c]3|4.0| | [G.] |Constant Value|<Physical Constant> Gravitational constant (m=1, kg=1, s=1)]|2[G.]|4.0| | [g] |Constant Value|<Physical Constant> Gravitational acceleration on Earth m/s^2|[g]3|4.0| | [hP] |Constant Value|<Physical Constant> Planck constant (m=1, kg=1, s=1)|2[hP]|4.0| | [h-] |Constant Value|<Physical Constant> Reduced Planck constant / Dirac constant (m=1, kg=1, s=1)]|[h-]3|4.0| | [lP] |Constant Value|<Physical Constant> Planck length m|2[lP]|4.0| | [mP] |Constant Value|<Physical Constant> Planck mass kg|[mP]3|4.0| | [tP] |Constant Value|<Physical Constant> Planck time s|2[tP]|4.0|

Astronomical Constant

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | [ly] |Constant Value|<Astronomical Constant> Light year m|[ly]3|4.0| | [au] |Constant Value|<Astronomical Constant> Astronomical unit m|2[au]|4.0| | [pc] |Constant Value|<Astronomical Constant> Parsec m|[pc]3|4.0| | [kpc] |Constant Value|<Astronomical Constant> Kiloparsec m|2[kpc]|4.0| | [Earth-R-eq] |Constant Value|<Astronomical Constant> Earth equatorial radius m|[Earth-R-eq]3|4.0| | [Earth-R-po] |Constant Value|<Astronomical Constant> Earth polar radius m|2[Earth-R-po]|4.0| | [Earth-R] |Constant Value|<Astronomical Constant> Earth mean radius (m=1)|[Earth-R]3|4.0| | [Earth-M] |Constant Value|<Astronomical Constant> Earth mass kg|2[Earth-M]|4.0| | [Earth-D] |Constant Value|<Astronomical Constant> Earth-Sun distance - semi major axis m|[Earth-D]3|4.0| | [Moon-R] |Constant Value|<Astronomical Constant> Moon mean radius m|2[Moon-R]|4.0| | [Moon-M] |Constant Value|<Astronomical Constant> Moon mass kg|[Moon-M]3|4.0| | [Moon-D] |Constant Value|<Astronomical Constant> Moon-Earth distance - semi major axis m|2[Moon-D]|4.0| | [Solar-R] |Constant Value|<Astronomical Constant> Solar mean radius m|[Solar-R]3|4.0| | [Solar-M] |Constant Value|<Astronomical Constant> Solar mass kg|2[Solar-M]|4.0| | [Mercury-R] |Constant Value|<Astronomical Constant> Mercury mean radius m|[Mercury-R]3|4.0| | [Mercury-M] |Constant Value|<Astronomical Constant> Mercury mass kg|2[Mercury-M]|4.0| | [Mercury-D] |Constant Value|<Astronomical Constant> Mercury-Sun distance - semi major axis m|[Mercury-D]3|4.0| | [Venus-R] |Constant Value|<Astronomical Constant> Venus mean radius m|2[Venus-R]|4.0| | [Venus-M] |Constant Value|<Astronomical Constant> Venus mass kg|[Venus-M]3|4.0| | [Venus-D] |Constant Value|<Astronomical Constant> Venus-Sun distance - semi major axis m|2[Venus-D]|4.0| | [Mars-R] |Constant Value|<Astronomical Constant> Mars mean radius m|[Mars-R]3|4.0| | [Mars-M] |Constant Value|<Astronomical Constant> Mars mass kg|2[Mars-M]|4.0| | [Mars-D] |Constant Value|<Astronomical Constant> Mars-Sun distance - semi major axis m|[Mars-D]3|4.0| | [Jupiter-R] |Constant Value|<Astronomical Constant> Jupiter mean radius m|2[Jupiter-R]|4.0| | [Jupiter-M] |Constant Value|<Astronomical Constant> Jupiter mass kg|[Jupiter-M]3|4.0| | [Jupiter-D] |Constant Value|<Astronomical Constant> Jupiter-Sun distance - semi major axis m|2[Jupiter-D]|4.0| | [Saturn-R] |Constant Value|<Astronomical Constant> Saturn mean radius m|[Saturn-R]3|4.0| | [Saturn-M] |Constant Value|<Astronomical Constant> Saturn mass kg|2[Saturn-M]|4.0| | [Saturn-D] |Constant Value|<Astronomical Constant> Saturn-Sun distance - semi major axis m|[Saturn-D]3|4.0| | [Uranus-R] |Constant Value|<Astronomical Constant> Uranus mean radius m|2[Uranus-R]|4.0| | [Uranus-M] |Constant Value|<Astronomical Constant> Uranus mass kg|[Uranus-M]3|4.0| | [Uranus-D] |Constant Value|<Astronomical Constant> Uranus-Sun distance - semi major axis m|2[Uranus-D]|4.0| | [Neptune-R] |Constant Value|<Astronomical Constant> Neptune mean radius m|[Neptune-R]3|4.0| | [Neptune-M] |Constant Value|<Astronomical Constant> Neptune mass kg|2[Neptune-M]|4.0| | [Neptune-D] |Constant Value|<Astronomical Constant> Neptune-Sun distance - semi major axis m|[Neptune-D]*3|4.0|

Metric prefixes

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | [%] |Unit|<Ratio, Fraction> Percentage = 0.01|2[%]|4.0| | [%%] |Unit|<Ratio, Fraction> Promil, Per mille = 0.001|[%%]3|4.0| | [Y] |Unit|<Metric prefix> Septillion / Yotta = 10^24|2[Y]|4.0| | [sept] |Unit|<Metric prefix> Septillion / Yotta = 10^24|[sept]3|4.0| | [Z] |Unit|<Metric prefix> Sextillion / Zetta = 10^21|2[Z]|4.0| | [sext] |Unit|<Metric prefix> Sextillion / Zetta = 10^21|[sext]3|4.0| | [E] |Unit|<Metric prefix> Quintillion / Exa = 10^18|2[E]|4.0| | [quint] |Unit|<Metric prefix> Quintillion / Exa = 10^18|[quint]3|4.0| | [P] |Unit|<Metric prefix> Quadrillion / Peta = 10^15|2[P]|4.0| | [quad] |Unit|<Metric prefix> Quadrillion / Peta = 10^15|[quad]3|4.0| | [T] |Unit|<Metric prefix> Trillion / Tera = 10^12|2[T]|4.0| | [tril] |Unit|<Metric prefix> Trillion / Tera = 10^12|[tril]3|4.0| | [G] |Unit|<Metric prefix> Billion / Giga = 10^9|2[G]|4.0| | [bil] |Unit|<Metric prefix> Billion / Giga = 10^9|[bil]3|4.0| | [M] |Unit|<Metric prefix> Million / Mega = 10^6|2[M]|4.0| | [mil] |Unit|<Metric prefix> Million / Mega = 10^6|[mil]3|4.0| | [k] |Unit|<Metric prefix> Thousand / Kilo = 10^3|2[k]|4.0| | [th] |Unit|<Metric prefix> Thousand / Kilo = 10^3|[th]3|4.0| | [hecto] |Unit|<Metric prefix> Hundred / Hecto = 10^2|2[hecto]|4.0| | [hund] |Unit|<Metric prefix> Hundred / Hecto = 10^2|[hund]3|4.0| | [deca] |Unit|<Metric prefix> Ten / Deca = 10|2[deca]|4.0| | [ten] |Unit|<Metric prefix> Ten / Deca = 10|[ten]3|4.0| | [deci] |Unit|<Metric prefix> Tenth / Deci = 0.1|2[deci]|4.0| | [centi] |Unit|<Metric prefix> Hundredth / Centi = 0.01|[centi]3|4.0| | [milli] |Unit|<Metric prefix> Thousandth / Milli = 0.001|2[milli]|4.0| | [mic] |Unit|<Metric prefix> Millionth / Micro = 10^-6|[mic]3|4.0| | [n] |Unit|<Metric prefix> Billionth / Nano = 10^-9|2[n]|4.0| | [p] |Unit|<Metric prefix> Trillionth / Pico = 10^-12|[p]3|4.0| | [f] |Unit|<Metric prefix> Quadrillionth / Femto = 10^-15|2[f]|4.0| | [a] |Unit|<Metric prefix> Quintillionth / Atoo = 10^-18|[a]3|4.0| | [z] |Unit|<Metric prefix> Sextillionth / Zepto = 10^-21|2[z]|4.0| | [y] |Unit|<Metric prefix> Septillionth / Yocto = 10^-24|[y]3|4.0|

Units of length

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | [m] |Unit|<Unit of length> Metre / Meter (m=1)|2[m]|4.0| | [km] |Unit|<Unit of length> Kilometre / Kilometer (m=1)|[km]3|4.0| | [cm] |Unit|<Unit of length> Centimetre / Centimeter (m=1)|2[cm]|4.0| | [mm] |Unit|<Unit of length> Millimetre / Millimeter (m=1)|[mm]3|4.0| | [inch] |Unit|<Unit of length> Inch (m=1)|2[inch]|4.0| | [yd] |Unit|<Unit of length> Yard (m=1)|[yd]3|4.0| | [ft] |Unit|<Unit of length> Feet (m=1)|2[ft]|4.0| | [mile] |Unit|<Unit of length> Mile (m=1)|[mile]3|4.0| | [nmi] |Unit|<Unit of length> Nautical mile (m=1)|2*[nmi]|4.0|

Units of area

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | [m2] |Unit|<Unit of area> Square metre / Square meter (m=1)|[m2]3|4.0| | [cm2] |Unit|<Unit of area> Square centimetre / Square centimeter (m=1)|2[cm2]|4.0| | [mm2] |Unit|<Unit of area> Square millimetre / Square millimeter (m=1)|[mm2]3|4.0| | [are] |Unit|<Unit of area> Are (m=1)|2[are]|4.0| | [ha] |Unit|<Unit of area> Hectare (m=1)|[ha]3|4.0| | [acre] |Unit|<Unit of area> Acre (m=1)|2[acre]|4.0| | [km2] |Unit|<Unit of area> Square kilometre / Square kilometer (m=1)|[km2]*3|4.0|

Units of volume

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | [mm3] |Unit|<Unit of volume> Cubic millimetre / Cubic millimeter (m=1)|2[mm3]|4.0| | [cm3] |Unit|<Unit of volume> Cubic centimetre / Cubic centimeter (m=1)|[cm3]3|4.0| | [m3] |Unit|<Unit of volume> Cubic metre / Cubic meter (m=1)|2[m3]|4.0| | [km3] |Unit|<Unit of volume> Cubic kilometre / Cubic kilometer (m=1)|[km3]3|4.0| | [ml] |Unit|<Unit of volume> Millilitre / Milliliter (m=1)|2[ml]|4.0| | [l] |Unit|<Unit of volume> Litre / Liter (m=1)|[l]3|4.0| | [gall] |Unit|<Unit of volume> Gallon (m=1)|2[gall]|4.0| | [pint] |Unit|<Unit of volume> Pint (m=1)|[pint]3|4.0|

Units of time

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | [s] |Unit|<Unit of time> Second (s=1)|2[s]|4.0| | [ms] |Unit|<Unit of time> Millisecond (s=1)|[ms]3|4.0| | [min] |Unit|<Unit of time> Minute (s=1)|2[min]|4.0| | [h] |Unit|<Unit of time> Hour (s=1)|[h]3|4.0| | [day] |Unit|<Unit of time> Day (s=1)|2[day]|4.0| | [week] |Unit|<Unit of time> Week (s=1)|[week]3|4.0| | [yearj] |Unit|<Unit of time> Julian year = 365.25 days (s=1)|2*[yearj]|4.0|

Units of mass

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | [kg] |Unit|<Unit of mass> Kilogram (kg=1)|[kg]3|4.0| | [gr] |Unit|<Unit of mass> Gram (kg=1)|2[gr]|4.0| | [mg] |Unit|<Unit of mass> Milligram (kg=1)|[mg]3|4.0| | [dag] |Unit|<Unit of mass> Decagram (kg=1)|2[dag]|4.0| | [t] |Unit|<Unit of mass> Tonne (kg=1)|[t]3|4.0| | [oz] |Unit|<Unit of mass> Ounce (kg=1)|2[oz]|4.0| | [lb] |Unit|<Unit of mass> Pound (kg=1)|[lb]*3|4.0|

Units of information

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | [b] |Unit|<Unit of information> Bit (bit=1)|2[b]|4.0| | [kb] |Unit|<Unit of information> Kilobit (bit=1)|[kb]3|4.0| | [Mb] |Unit|<Unit of information> Megabit (bit=1)|2[Mb]|4.0| | [Gb] |Unit|<Unit of information> Gigabit (bit=1)|[Gb]3|4.0| | [Tb] |Unit|<Unit of information> Terabit (bit=1)|2[Tb]|4.0| | [Pb] |Unit|<Unit of information> Petabit (bit=1)|[Pb]3|4.0| | [Eb] |Unit|<Unit of information> Exabit (bit=1)|2[Eb]|4.0| | [Zb] |Unit|<Unit of information> Zettabit (bit=1)|[Zb]3|4.0| | [Yb] |Unit|<Unit of information> Yottabit (bit=1)|2[Yb]|4.0| | [B] |Unit|<Unit of information> Byte (bit=1)|[B]3|4.0| | [kB] |Unit|<Unit of information> Kilobyte (bit=1)|2[kB]|4.0| | [MB] |Unit|<Unit of information> Megabyte (bit=1)|[MB]3|4.0| | [GB] |Unit|<Unit of information> Gigabyte (bit=1)|2[GB]|4.0| | [TB] |Unit|<Unit of information> Terabyte (bit=1)|[TB]3|4.0| | [PB] |Unit|<Unit of information> Petabyte (bit=1)|2[PB]|4.0| | [EB] |Unit|<Unit of information> Exabyte (bit=1)|[EB]3|4.0| | [ZB] |Unit|<Unit of information> Zettabyte (bit=1)|2[ZB]|4.0| | [YB] |Unit|<Unit of information> Yottabyte (bit=1)|[YB]3|4.0|

Units of energy

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | [J] |Unit|<Unit of energy> Joule (m=1, kg=1, s=1)|2[J]|4.0| | [eV] |Unit|<Unit of energy> Electronovolt (m=1, kg=1, s=1)|[eV]3|4.0| | [keV] |Unit|<Unit of energy> Kiloelectronovolt (m=1, kg=1, s=1)|2[keV]|4.0| | [MeV] |Unit|<Unit of energy> Megaelectronovolt (m=1, kg=1, s=1)|[MeV]3|4.0| | [GeV] |Unit|<Unit of energy> Gigaelectronovolt (m=1, kg=1, s=1)|2[GeV]|4.0| | [TeV] |Unit|<Unit of energy> Teraelectronovolt (m=1, kg=1, s=1)|[TeV]3|4.0|

Units of speed

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | [m/s] |Unit|<Unit of speed> Metre / Meter per second (m=1, s=1)|2[m/s]|4.0| | [km/h] |Unit|<Unit of speed> Kilometre / Kilometer per hour (m=1, s=1)|[km/h]3|4.0| | [mi/h] |Unit|<Unit of speed> Mile per hour (m=1, s=1)|2[mi/h]|4.0| | [knot] |Unit|<Unit of speed> Knot (m=1, s=1)|[knot]3|4.0|

Units of acceleration

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | [m/s2] |Unit|<Unit of acceleration> Metre / Meter per square second (m=1, s=1)|2[m/s2]|4.0| | [km/h2] |Unit|<Unit of acceleration> Kilometre / Kilometer per square hour (m=1, s=1)|[km/h2]3|4.0| | [mi/h2] |Unit|<Unit of acceleration> Mile per square hour (m=1, s=1)|2*[mi/h2]|4.0|

Units of angle

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | [rad] |Unit|<Unit of angle> Radian (rad=1)|[rad]pi|4.0| | [deg] |Unit|<Unit of angle> Degree of arc (rad=1)|180[deg]|4.0| | ['] |Unit|<Unit of angle> Minute of arc (rad=1)|[']3|4.0| | [''] |Unit|<Unit of angle> Second of arc (rad=1)|2['']|4.0|

Other parser symbols

|Key word|Category|Description|Example|Since| |---|---|---|---|---| | ( |Parser Symbol|Left parentheses|(3+2)/4|1.0| | ) |Parser Symbol|Right parentheses|(3+2)/4|1.0| | , |Parser Symbol|Comma (function parameters)|min(2,3,1)|1.0| | ; |Parser Symbol|Semicolon (function parameters)|min(2;3;1)|1.0|

paypal

Enjoy :-)

Best regards, Mariusz Gromada

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.