Github url

fast-style-transfer

by lengstrom

TensorFlow CNN for fast style transfer ⚡🖥🎨🖼

9.2K Stars 2.3K Forks Last release: Not found 64 Commits 0 Releases

Available items

No Items, yet!

The developer of this repository has not created any items for sale yet. Need a bug fixed? Help with integration? A different license? Create a request here:

Fast Style Transfer in TensorFlow

Add styles from famous paintings to any photo in a fraction of a second! You can even style videos!

It takes 100ms on a 2015 Titan X to style the MIT Stata Center (1024×680) like Udnie, by Francis Picabia.

Our implementation is based off of a combination of Gatys' A Neural Algorithm of Artistic Style, Johnson's Perceptual Losses for Real-Time Style Transfer and Super-Resolution, and Ulyanov's Instance Normalization.

Sponsorship

Please consider sponsoring my work on this project!

License

Copyright (c) 2016 Logan Engstrom. Contact me for commercial use (or rather any use that is not academic research) (email: engstrom at my university's domain dot edu). Free for research use, as long as proper attribution is given and this copyright notice is retained.

Video Stylization

Here we transformed every frame in a video, then combined the results. Click to go to the full demo on YouTube! The style here is Udnie, as above.

Stylized fox video. Click to go to YouTube!

See how to generate these videos here!

Image Stylization

We added styles from various paintings to a photo of Chicago. Click on thumbnails to see full applied style images.



Implementation Details

Our implementation uses TensorFlow to train a fast style transfer network. We use roughly the same transformation network as described in Johnson, except that batch normalization is replaced with Ulyanov's instance normalization, and the scaling/offset of the output

tanh

layer is slightly different. We use a loss function close to the one described in Gatys, using VGG19 instead of VGG16 and typically using "shallower" layers than in Johnson's implementation (e.g. we use

relu1\_1

rather than

relu1\_2

). Empirically, this results in larger scale style features in transformations.

Vitual Environment Setup (Anaconda) - Windows/Linux

Tested on | Spec | | |-----------------------------|-------------------------------------------------------------| | Operating System | Windows 10 Home | | GPU | Nvidia GTX 2080 TI | | CUDA Version | 11.0 | | Driver Version | 445.75 |

Step 1:Install Anaconda

https://docs.anaconda.com/anaconda/install/

Step 2:Build a virtual environment

Run the following commands in sequence in Anaconda Prompt:

conda create -n tf-gpu tensorflow-gpu=2.1.0 conda activate tf-gpu conda install jupyterlab jupyter lab

Run the following command in the notebook or just conda install the package:

!pip install moviepy==1.0.2

Follow the commands below to use fast-style-transfer

Documentation

Training Style Transfer Networks

Use

style.py

to train a new style transfer network. Run

python style.py

to view all the possible parameters. Training takes 4-6 hours on a Maxwell Titan X. More detailed documentation here. **Before you run this, you should run

setup.sh
```**. Example usage:

python style.py --style path/to/style/img.jpg \ --checkpoint-dir checkpoint/path \ --test path/to/test/img.jpg \ --test-dir path/to/test/dir \ --content-weight 1.5e1 \ --checkpoint-iterations 1000 \ --batch-size 20


### Evaluating Style Transfer Networks

Use

evaluate.py

 to evaluate a style transfer network. Run 

python evaluate.py

 to view all the possible parameters. Evaluation takes 100 ms per frame (when batch size is 1) on a Maxwell Titan X. [More detailed documentation here](https://github.com/lengstrom/fast-style-transfer/blob/master/docs.md#evaluatepy). Takes several seconds per frame on a CPU. **Models for evaluation are [located here](https://drive.google.com/drive/folders/0B9jhaT37ydSyRk9UX0wwX3BpMzQ?usp=sharing)**. Example usage:

python evaluate.py --checkpoint path/to/style/model.ckpt \ --in-path dir/of/test/imgs/ \ --out-path dir/for/results/


### Stylizing Video

Use

transform_video.py

 to transfer style into a video. Run 

python transform_video.py

 to view all the possible parameters. Requires 

ffmpeg

. [More detailed documentation here](https://github.com/lengstrom/fast-style-transfer/blob/master/docs.md#transform_videopy). Example usage:

python transform_video.py --in-path path/to/input/vid.mp4 \ --checkpoint path/to/style/model.ckpt \ --out-path out/video.mp4 \ --device /gpu:0 \ --batch-size 4


### Requirements

You will need the following to run the above: - TensorFlow 0.11.0 - Python 2.7.9, Pillow 3.4.2, scipy 0.18.1, numpy 1.11.2 - If you want to train (and don't want to wait for 4 months): - A decent GPU - All the required NVIDIA software to run TF on a GPU (cuda, etc) - ffmpeg 3.1.3 if you want to stylize video

### Citation

@misc{engstrom2016faststyletransfer, author = {Logan Engstrom}, title = {Fast Style Transfer}, year = {2016}, howpublished = {\url{https://github.com/lengstrom/fast-style-transfer/}}, note = {commit xxxxxxx} }

```

Attributions/Thanks

  • This project could not have happened without the advice (and GPU access) given by Anish Athalye.
    • The project also borrowed some code from Anish's Neural Style
  • Some readme/docs formatting was borrowed from Justin Johnson's Fast Neural Style
  • The image of the Stata Center at the very beginning of the README was taken by Juan Paulo

Related Work

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.