Need help with nfs-subdir-external-provisioner?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

kubernetes-sigs
227 Stars 80 Forks Apache License 2.0 311 Commits 19 Opened issues

Description

Dynamic sub-dir volume provisioner on a remote NFS server.

Services available

!
?

Need anything else?

Contributors list

Kubernetes NFS Subdir External Provisioner

NFS subdir external provisioner is an automatic provisioner that use your existing and already configured NFS server to support dynamic provisioning of Kubernetes Persistent Volumes via Persistent Volume Claims. Persistent volumes are provisioned as

${namespace}-${pvcName}-${pvName}
.

Note: This repository is migrated from https://github.com/kubernetes-incubator/external-storage/tree/master/nfs-client. As part of the migration: - The container image name and repository has changed to

gcr.io/k8s-staging-sig-storage
and
nfs-subdir-external-provisioner
respectively. - To maintain backward compatibility with earlier deployment files, the naming of NFS Client Provisioner is retained as
nfs-client-provisioner
in the deployment YAMLs. - One of the pending areas for development on this repository is to add automated e2e tests. If you would like to contribute, please raise an issue or reach us on the Kubernetes slack #sig-storage channel.

How to deploy NFS Subdir External Provisioner to your cluster

To note again, you must already have an NFS Server.

With Helm

Follow the instructions from the helm chart README.

The tl;dr is

$ helm repo add nfs-subdir-external-provisioner https://kubernetes-sigs.github.io/nfs-subdir-external-provisioner/
$ helm install nfs-subdir-external-provisioner nfs-subdir-external-provisioner/nfs-subdir-external-provisioner \
    --set nfs.server=x.x.x.x \
    --set nfs.path=/exported/path

Without Helm

Step 1: Get connection information for your NFS server

Make sure your NFS server is accessible from your Kubernetes cluster and get the information you need to connect to it. At a minimum you will need its hostname.

Step 2: Get the NFS Subdir External Provisioner files

To setup the provisioner you will download a set of YAML files, edit them to add your NFS server's connection information and then apply each with the

kubectl
/
oc
command.

Get all of the files in the deploy directory of this repository. These instructions assume that you have cloned the kubernetes-sigs/nfs-subdir-external-provisioner repository and have a bash-shell open in the root directory.

Step 3: Setup authorization

If your cluster has RBAC enabled or you are running OpenShift you must authorize the provisioner. If you are in a namespace/project other than "default" edit

deploy/rbac.yaml
.

Kubernetes:

# Set the subject of the RBAC objects to the current namespace where the provisioner is being deployed
$ NS=$(kubectl config get-contexts|grep -e "^\*" |awk '{print $5}')
$ NAMESPACE=${NS:-default}
$ sed -i'' "s/namespace:.*/namespace: $NAMESPACE/g" ./deploy/rbac.yaml ./deploy/deployment.yaml
$ kubectl create -f deploy/rbac.yaml

OpenShift:

On some installations of OpenShift the default admin user does not have cluster-admin permissions. If these commands fail refer to the OpenShift documentation for User and Role Management or contact your OpenShift provider to help you grant the right permissions to your admin user. On OpenShift the service account used to bind volumes does not have the necessary permissions required to use the

hostmount-anyuid
SCC. See also Role based access to SCC for more information. If these commands fail refer to the OpenShift documentation for User and Role Management or contact your OpenShift provider to help you grant the right permissions to your admin user.
# Set the subject of the RBAC objects to the current namespace where the provisioner is being deployed
$ NAMESPACE=`oc project -q`
$ sed -i'' "s/namespace:.*/namespace: $NAMESPACE/g" ./deploy/rbac.yaml
$ oc create -f deploy/rbac.yaml
$ oc create role use-scc-hostmount-anyuid --verb=use --resource=scc --resource-name=hostmount-anyuid -n $NAMESPACE
$ oc adm policy add-role-to-user use-scc-hostmount-anyuid system:serviceaccount:$NAMESPACE:nfs-client-provisioner

Step 4: Configure the NFS subdir external provisioner

If you would like to use a custom built nfs-subdir-external-provisioner image, you must edit the provisioner's deployment file to specify the correct location of your

nfs-client-provisioner
container image.

Next you must edit the provisioner's deployment file to add connection information for your NFS server. Edit

deploy/deployment.yaml
and replace the two occurences of with your server's hostname.
kind: Deployment
apiVersion: apps/v1
metadata:
  name: nfs-client-provisioner
spec:
  replicas: 1
  selector:
    matchLabels:
      app: nfs-client-provisioner
  strategy:
    type: Recreate
  template:
    metadata:
      labels:
        app: nfs-client-provisioner
    spec:
      serviceAccountName: nfs-client-provisioner
      containers:
        - name: nfs-client-provisioner
          image: gcr.io/k8s-staging-sig-storage/nfs-subdir-external-provisioner:v4.0.0
          volumeMounts:
            - name: nfs-client-root
              mountPath: /persistentvolumes
          env:
            - name: PROVISIONER_NAME
              value: k8s-sigs.io/nfs-subdir-external-provisioner
            - name: NFS_SERVER
              value: 
            - name: NFS_PATH
              value: /var/nfs
      volumes:
        - name: nfs-client-root
          nfs:
            server: 
            path: /var/nfs

Note: If you want to change the PROVISIONERNAME above from

k8s-sigs.io/nfs-subdir-external-provisioner
to something else like
myorg/nfs-storage
, remember to also change the PROVISIONER
NAME in the storage class definition below.

To disable leader election, define an env variable named ENABLELEADERELECTION and set its value to false.

Step 5: Deploying your storage class

Parameters:

| Name | Description | Default | | --------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :--------------------------------------------------------------: | | onDelete | If it exists and has a delete value, delete the directory, if it exists and has a retain value, save the directory. | will be archived with name on the share:

archived-
| | archiveOnDelete | If it exists and has a false value, delete the directory. if
onDelete
exists,
archiveOnDelete
will be ignored. | will be archived with name on the share:
archived-
| | pathPattern | Specifies a template for creating a directory path via PVC metadata's such as labels, annotations, name or namespace. To specify metadata use
${.PVC.}
:
${PVC.namespace}
| n/a |

This is

deploy/class.yaml
which defines the NFS subdir external provisioner's Kubernetes Storage Class:
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: managed-nfs-storage
provisioner: k8s-sigs.io/nfs-subdir-external-provisioner # or choose another name, must match deployment's env PROVISIONER_NAME'
parameters:
  pathPattern: "${.PVC.namespace}/${.PVC.annotations.nfs.io/storage-path}" # waits for nfs.io/storage-path annotation, if not specified will accept as empty string.
  onDelete: delete

Step 6: Finally, test your environment!

Now we'll test your NFS subdir external provisioner.

Deploy:

$ kubectl create -f deploy/test-claim.yaml -f deploy/test-pod.yaml

Now check your NFS Server for the file

SUCCESS
.
kubectl delete -f deploy/test-pod.yaml -f deploy/test-claim.yaml

Now check the folder has been deleted.

Step 7: Deploying your own PersistentVolumeClaims

To deploy your own PVC, make sure that you have the correct

storageClassName
as indicated by your
deploy/class.yaml
file.

For example:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
  name: test-claim
  annotations:
    nfs.io/storage-path: "test-path" # not required, depending on whether this annotation was shown in the storage class description
spec:
  storageClassName: managed-nfs-storage
  accessModes:
    - ReadWriteMany
  resources:
    requests:
      storage: 1Mi

Build and publish your own container image

To build your own custom container image from this repository, you will have to build and push the nfs-subdir-external-provisioner image using the following instructions.

make build
make container
# `nfs-subdir-external-provisioner:latest` will be created. 
# Note: This will build a single-arch image that matches the machine on which container is built.
# To upload this to your custom registry, say `quay.io/myorg` and arch as amd64, you can use
# docker tag nfs-subdir-external-provisioner:latest quay.io/myorg/nfs-subdir-external-provisioner-amd64:latest
# docker push quay.io/myorg/nfs-subdir-external-provisioner-amd64:latest

Build and publish with GitHub Actions

In a forked repository you can use GitHub Actions pipeline defined in .github/workflows/release.yml. The pipeline builds Docker images for

linux/amd64
,
linux/arm64
, and
linux/arm/v7
platforms and publishes them using a multi-arch manifest. The pipeline is triggered when you add a tag like
gh-v{major}.{minor}.{patch}
to your commit and push it to GitHub. The tag is used for generating Docker image tags:
latest
,
{major}
,
{major}:{minor}
,
{major}:{minor}:{patch}
.

The pipeline adds several labels: *

org.opencontainers.image.title=${{ github.event.repository.name }}
*
org.opencontainers.image.description=${{ github.event.repository.description }}
*
org.opencontainers.image.url=${{ github.event.repository.html_url }}
*
org.opencontainers.image.source=${{ github.event.repository.clone_url }}
*
org.opencontainers.image.created=${{ steps.prep.outputs.created }}
*
org.opencontainers.image.revision=${{ github.sha }}
*
org.opencontainers.image.licenses=${{ github.event.repository.license.spdx_id }}

Important: * The pipeline performs the docker login command using

REGISTRY_USERNAME
and
REGISTRY_TOKEN
secrets, which have to be provided. * You also need to provide the
DOCKER_IMAGE
secret specifying your Docker image name, e.g.,
quay.io/[username]/nfs-subdir-external-provisioner
.

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.