Need help with watchtower?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

kislyuk
517 Stars 88 Forks Apache License 2.0 181 Commits 24 Opened issues

Description

Python CloudWatch Logging: Log Analytics and Application Intelligence

Services available

!
?

Need anything else?

Contributors list

Watchtower: Python CloudWatch Logging

Watchtower is a log handler for

Amazon Web Services CloudWatch Logs
_.

CloudWatch Logs is a log management service built into AWS. It is conceptually similar to services like Splunk and Loggly, but is more lightweight, cheaper, and tightly integrated with the rest of AWS.

Watchtower, in turn, is a lightweight adapter between the

Python logging system
_ and CloudWatch Logs. It uses the
boto3 AWS SDK
, and lets you plug your application logging directly into CloudWatch without the need to install a system-wide log collector like
awscli-cwlogs 
and round-trip your logs through the instance's syslog. It aggregates logs into batches to avoid sending an API request per each log message, while guaranteeing a delivery deadline (60 seconds by default).

Installation ~~~~~~~~~~~~ ::

pip install watchtower

Synopsis ~~~~~~~~ Install

awscli 
_ and set your AWS credentials (run
aws configure
).

.. code-block:: python

import watchtower, logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logger.addHandler(watchtower.CloudWatchLogHandler())
logger.info("Hi")
logger.info(dict(foo="bar", details={}))

After running the example, you can see the log output in your

AWS console
_.

Example: Flask logging with Watchtower ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. code-block:: python

import watchtower, flask, logging

logging.basicConfig(level=logging.INFO) app = flask.Flask("loggable") handler = watchtower.CloudWatchLogHandler() app.logger.addHandler(handler) logging.getLogger("werkzeug").addHandler(handler)

@app.route('/') def hello_world(): return 'Hello World!'

if name == 'main': app.run()

(See also

http://flask.pocoo.org/docs/errorhandling/ 
_.)

Example: Django logging with Watchtower ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This is an example of Watchtower integration with Django. In your Django project, add the following to

settings.py
:

.. code-block:: python

from boto3.session import Session

AWS_ACCESS_KEY_ID = 'your access key' AWS_SECRET_ACCESS_KEY = 'your secret access key' AWS_REGION_NAME = 'your region'

boto3_session = Session(aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION_NAME)

LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'root': { 'level': logging.ERROR, 'handlers': ['console'], }, 'formatters': { 'simple': { 'format': "%(asctime)s [%(levelname)-8s] %(message)s", 'datefmt': "%Y-%m-%d %H:%M:%S" }, 'aws': { # you can add specific format for aws here 'format': "%(asctime)s [%(levelname)-8s] %(message)s", 'datefmt': "%Y-%m-%d %H:%M:%S" }, }, 'handlers': { 'watchtower': { 'level': 'DEBUG', 'class': 'watchtower.CloudWatchLogHandler', 'boto3_session': boto3_session, 'log_group': 'MyLogGroupName', 'stream_name': 'MyStreamName', 'formatter': 'aws', }, }, 'loggers': { 'django': { 'level': 'INFO', 'handlers': ['watchtower'], 'propagate': False, }, # add your other loggers here... }, }

Using this configuration, every log statement from Django will be sent to Cloudwatch in the log group

MyLogGroupName
under the stream name
MyStreamName
. Instead of setting credentials via
AWS_ACCESS_KEY_ID
and other variables, you can also assign an IAM role to your instance and omit those parameters, prompting boto3 to ingest credentials from instance metadata.

(See also the

Django logging documentation 
__).

Examples: Querying CloudWatch logs ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This section is not specific to Watchtower. It demonstrates the use of awscli and jq to read and search CloudWatch logs on the command line.

For the Flask example above, you can retrieve your application logs with the following two commands::

aws logs get-log-events --log-group-name watchtower --log-stream-name loggable | jq '.events[].message'
aws logs get-log-events --log-group-name watchtower --log-stream-name werkzeug | jq '.events[].message'

CloudWatch Logs supports alerting and dashboards based on

metric filters
_, which are pattern rules that extract information from your logs and feed it to alarms and dashboard graphs. The following example shows logging structured JSON data using Watchtower, setting up a metric filter to extract data from the log stream, a dashboard to visualize it, and an alarm that sends an email::
TODO

Examples: Python Logging Config ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Python has the ability to provide a configuration file that can be loaded in order to separate the logging configuration from the code. Historically, Python has used the

logging.config.fileConfig
function to do so, however, that feature lacks the ability to use keyword args. Python 2.7 introduced a new feature to handle logging that is more robust -
logging.config.dictConfig
which provides the ability to do more advanced Filters, but more importantly adds keyword args, thus allowing the
logging.config
functionality to instantiate Watchtower.

The following are two example YAML configuration files that can be loaded using

PyYaml
. The resulting
dict
object can then be loaded into
logging.config.dictConfig
. The first example is a basic example that relies on the default configuration provided by
boto3
:

.. code-block:: yaml

# Default AWS Config
version: 1
formatters:
    json:
        format: "[%(asctime)s] %(process)d %(levelname)s %(name)s:%(funcName)s:%(lineno)s - %(message)s"
    plaintext:
        format: "[%(asctime)s] %(process)d %(levelname)s %(name)s:%(funcName)s:%(lineno)s - %(message)s"
handlers:
    console:
        (): logging.StreamHandler
        level: DEBUG
        formatter: plaintext
        stream: sys.stdout
    watchtower:
        formatter: json
        level: DEBUG
        (): watchtower.CloudWatchLogHandler
        log_group: logger
        stream_name:  loggable
        send_interval: 1
        create_log_group: False
loggers:
    root:
        handlers: [console, watchtower, logfile]
    boto:
        handlers: [console]
    boto3:
        handlers: [console]
    botocore:
        handlers: [console]
    requests:
        handlers: [console]

The above works well if you can use the default configuration, or rely on environmental variables. However, sometimes one may want to use different credentials for logging than used for other functionality; in this case the

boto3_profile_name
option to Watchtower can be used to provide a profile name:

.. code-block:: yaml

# AWS Config Profile
version: 1
formatters:
    json:
        format: "[%(asctime)s] %(process)d %(levelname)s %(name)s:%(funcName)s:%(lineno)s - %(message)s"
    plaintext:
        format: "[%(asctime)s] %(process)d %(levelname)s %(name)s:%(funcName)s:%(lineno)s - %(message)s"
handlers:
    console:
        (): logging.StreamHandler
        level: DEBUG
        formatter: plaintext
        stream: sys.stdout
    watchtower:
        formatter: json
        level: DEBUG
        (): watchtower.CloudWatchLogHandler
        log_group: logger
        stream_name:  loggable
        boto3_profile_name: watchtowerlogger
        send_interval: 1
        create_log_group: False
loggers:
    root:
        handlers: [console, watchtower, logfile]
    boto:
        handlers: [console]
    boto3:
        handlers: [console]
    botocore:
        handlers: [console]
    requests:
        handlers: [console]

For the more advanced configuration, the following configuration file will provide the matching credentials to the

watchtowerlogger
profile:

.. code-block:: cfg

[profile watchtowerlogger]
aws_access_key_id=MyAwsAccessKey
aws_secret_access_key=MyAwsSecretAccessKey
region=us-east-1

Finally, the following shows how to load the configuration into the working application:

.. code-block:: python

import logging.config

import flask import yaml

app = flask.Flask("loggable")

@app.route('/') def hello_world(): return 'Hello World!'

if name == 'main': with open('logging.yml', 'r') as log_config: config_yml = log_config.read() config_dict = yaml.load(config_yml) logging.config.dictConfig(config_dict) app.run()

Authors

  • Andrey Kislyuk

Links

  • Project home page (GitHub) 
    _
  • Documentation 
    _
  • Package distribution (PyPI) 
    _
  • AWS CLI CloudWatch Logs plugin 
    _
  • Docker awslogs adapter 
    _

Bugs ~~~~ Please report bugs, issues, feature requests, etc. on

GitHub 
_.

License

Licensed under the terms of the

Apache License, Version 2.0 
_.

.. image:: https://github.com/kislyuk/watchtower/workflows/Python%20package/badge.svg :target: https://github.com/kislyuk/watchtower/actions .. image:: https://codecov.io/github/kislyuk/watchtower/coverage.svg?branch=master :target: https://codecov.io/github/kislyuk/watchtower?branch=master .. image:: https://img.shields.io/pypi/v/watchtower.svg :target: https://pypi.python.org/pypi/watchtower .. image:: https://img.shields.io/pypi/l/watchtower.svg :target: https://pypi.python.org/pypi/watchtower

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.