Multi-user server for Jupyter notebooks
Technical Overview | Installation | Configuration | Docker | Contributing | License | Help and Resources
<!-- CircleCI Token: b5b65862eb2617b9a8d39e79340b0a6b816da8cc -->
With JupyterHub you can create a multi-user Hub which spawns, manages, and proxies multiple instances of the single-user Jupyter notebook server.
Project Jupyter created JupyterHub to support many users. The Hub can offer notebook servers to a class of students, a corporate data science workgroup, a scientific research project, or a high performance computing group.
Three main actors make up JupyterHub:
Basic principles for operation are:
JupyterHub also provides a REST API for administration of the Hub and its users.
conda, the nodejs and npm dependencies will be installed for you by conda.
pip, install a recent version of nodejs/npm. For example, install it on Linux (Debian/Ubuntu) using:
sudo apt-get install npm nodejs-legacy
The
nodejs-legacypackage installs the
nodeexecutable and is currently required for npm to work on Debian/Ubuntu.
If using the default PAM Authenticator, a pluggable authentication module (PAM).
TLS certificate and key for HTTPS communication
Domain name
conda
To install JupyterHub along with its dependencies including nodejs/npm:
conda install -c conda-forge jupyterhub
If you plan to run notebook servers locally, install the Jupyter notebook or JupyterLab:
conda install notebook conda install jupyterlab
pip
JupyterHub can be installed with
pip, and the proxy with
npm:
npm install -g configurable-http-proxy python3 -m pip install jupyterhub
If you plan to run notebook servers locally, you will need to install the Jupyter notebook package:
python3 -m pip install --upgrade notebook
To start the Hub server, run the command:
jupyterhub
Visit
https://localhost:8000in your browser, and sign in with your unix PAM credentials.
Note: To allow multiple users to sign into the server, you will need to run the
jupyterhubcommand as a privileged user, such as root. The wiki describes how to run the server as a less privileged user, which requires more configuration of the system.
The Getting Started section of the documentation explains the common steps in setting up JupyterHub.
The JupyterHub tutorial provides an in-depth video and sample configurations of JupyterHub.
To generate a default config file with settings and descriptions:
jupyterhub --generate-config
To start the Hub on a specific url and port
10.0.1.2:443with https:
jupyterhub --ip 10.0.1.2 --port 443 --ssl-key my_ssl.key --ssl-cert my_ssl.cert
| Authenticator | Description | | ---------------------------------------------------------------------------- | ------------------------------------------------- | | PAMAuthenticator | Default, built-in authenticator | | OAuthenticator | OAuth + JupyterHub Authenticator = OAuthenticator | | ldapauthenticator | Simple LDAP Authenticator Plugin for JupyterHub | | kerberosauthenticator | Kerberos Authenticator Plugin for JupyterHub |
| Spawner | Description | | -------------------------------------------------------------- | -------------------------------------------------------------------------- | | LocalProcessSpawner | Default, built-in spawner starts single-user servers as local processes | | dockerspawner | Spawn single-user servers in Docker containers | | kubespawner | Kubernetes spawner for JupyterHub | | sudospawner | Spawn single-user servers without being root | | systemdspawner | Spawn single-user notebook servers using systemd | | batchspawner | Designed for clusters using batch scheduling software | | yarnspawner | Spawn single-user notebook servers distributed on a Hadoop cluster | | wrapspawner | WrapSpawner and ProfilesSpawner enabling runtime configuration of spawners |
A starter docker image for JupyterHub gives a baseline deployment of JupyterHub using Docker.
Important: This
jupyterhub/jupyterhubimage contains only the Hub itself, with no configuration. In general, one needs to make a derivative image, with at least a
jupyterhub_config.pysetting up an Authenticator and/or a Spawner. To run the single-user servers, which may be on the same system as the Hub or not, Jupyter Notebook version 4 or greater must be installed.
The JupyterHub docker image can be started with the following command:
docker run -p 8000:8000 -d --name jupyterhub jupyterhub/jupyterhub jupyterhub
This command will create a container named
jupyterhubthat you can stop and resume with
docker stop/start.
The Hub service will be listening on all interfaces at port 8000, which makes this a good choice for testing JupyterHub on your desktop or laptop.
If you want to run docker on a computer that has a public IP then you should (as in MUST) secure it with ssl by adding ssl options to your docker configuration or by using a ssl enabled proxy.
Mounting volumes will allow you to store data outside the docker image (host system) so it will be persistent, even when you start a new image.
The command
docker exec -it jupyterhub bashwill spawn a root shell in your docker container. You can use the root shell to create system users in the container. These accounts will be used for authentication in JupyterHub's default configuration.
If you would like to contribute to the project, please read our contributor documentation and the
CONTRIBUTING.md. The
CONTRIBUTING.mdfile explains how to set up a development installation, how to run the test suite, and how to contribute to documentation.
For a high-level view of the vision and next directions of the project, see the JupyterHub community roadmap.
JupyterHub is supported on Linux/Unix based systems.
JupyterHub officially does not support Windows. You may be able to use JupyterHub on Windows if you use a Spawner and Authenticator that work on Windows, but the JupyterHub defaults will not. Bugs reported on Windows will not be accepted, and the test suite will not run on Windows. Small patches that fix minor Windows compatibility issues (such as basic installation) may be accepted, however. For Windows-based systems, we would recommend running JupyterHub in a docker container or Linux VM.
Additional Reference: Tornado's documentation on Windows platform support
We use a shared copyright model that enables all contributors to maintain the copyright on their contributions.
All code is licensed under the terms of the revised BSD license.
We encourage you to ask questions on the Jupyter mailing list. To participate in development discussions or get help, talk with us on our JupyterHub Gitter channel.
JupyterHub follows the Jupyter Community Guides.
Technical Overview | Installation | Configuration | Docker | Contributing | License | Help and Resources