by ischlag

An example of data parallelism and async updates of parameter in tensorflow.

125 Stars 79 Forks Last release: Not found 18 Commits 0 Releases

Available items

No Items, yet!

The developer of this repository has not created any items for sale yet. Need a bug fixed? Help with integration? A different license? Create a request here:

Distributed Tensorflow 1.2 Example (DEPRECATED)

Using data parallelism with shared model parameters while updating parameters asynchronous. See comment for some changes to make the parameter updates synchronous (not sure if the synchronous part is implemented correctly though).

Trains a simple sigmoid Neural Network on MNIST for 20 epochs on three machines using one parameter server. The goal was not to achieve high accuracy but to get to know tensorflow.

Run it like this:

First, change the hardcoded host names with your own and run the following commands on the respective machines.

pc-01$ python example.py --job_name="ps" --task_index=0 
pc-02$ python example.py --job_name="worker" --task_index=0 
pc-03$ python example.py --job_name="worker" --task_index=1 
pc-04$ python example.py --job_name="worker" --task_index=2 

Thanks to snowsquizy for updating the script to TensorFlow 1.2.

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.