psychometrics package, including MIRT(multidimension item response theory), IRT(item response theory),GRM(grade response theory),CAT(computerized adaptive testing), CDM(cognitive diagnostic model), FA(factor analysis), SEM(Structural Equation Modeling) .
.. image:: https://img.shields.io/travis/inuyasha2012/pypsy.svg :target: https://travis-ci.org/inuyasha2012/pypsy
.. image:: https://coveralls.io/repos/github/inuyasha2012/pypsy/badge.svg?branch=master :target: https://coveralls.io/github/inuyasha2012/pypsy?branch=master
.. image:: https://img.shields.io/pypi/v/psy.svg :target: https://pypi.python.org/pypi/psy
.. image:: https://readthedocs.org/projects/python-psychometrics/badge/?version=latest :target: https://python-psychometrics.readthedocs.io/en/latest/?badge=latest
中文 <.>_
psychometrics package, including structural equation model, confirmatory factor analysis, unidimensional item response theory, multidimensional item response theory, cognitive diagnosis model, factor analysis and adaptive testing. The package is still a doll. will be finished in future.
models ~~~~~~
binary response data IRT (two parameters, three parameters).
grade respone data IRT (GRM model)
EM algorithm (2PL, GRM)
MCMC algorithm (3PL)
Parameter estimation algorithm ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The initial value ^^^^^^^^^^^^^^^^^
The approximate polychoric correlation is calculated, and the slope initial value is obtained by factor analysis of the polychoric correlation matrix.
EM algorithm ^^^^^^^^^^^^
E step uses GH integral.
M step uses Newton algorithm (sparse matrix is divided into non sparse matrix).
Factor rotation ^^^^^^^^^^^^^^^
Gradient projection algorithm
The shortcomings ~~~~~~~~~~~~~~~~
GH integrals can only estimate low dimensional parameters.
models ~~~~~~
Dina
ho-dina
parameter estimation algorithms ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
EM algorithm
MCMC algorithm
maximum likelihood estimation (only for estimating skill parameters of subjects)
contains three parameter estimation methods(ULS, ML and GLS).
based on gradient descent
can be used for continuous data, binary data and ordered data.
based on gradient descent
binary and ordered data based on Polychoric correlation matrix.
For the time being, only for the calculation of full information item factor analysis, it is very simple.
The algorithm ~~~~~~~~~~~~~
principal component analysis
The rotation algorithm ~~~~~~~~~~~~~~~~~~~~~~
gradient projection
model ~~~~~
Thurston IRT model (multidimensional item response theory model for personality test)
Algorithm ~~~~~~~~~
Maximum information method for multidimensional item response theory
numpy
progressbar2
install ~~~~~~~ ::
pip install psy
See demo
theta parameterization of CCFA
parameter estimation of structural equation models for multivariate data
Bayesin knowledge tracing (Bayesian knowledge tracking)
multidimensional item response theory (full information item factor analysis)
high dimensional computing algorithm (adaptive integral, etc.)
various item response models
cognitive diagnosis model
G-DINA model
Q matrix correlation algorithm
Factor analysis
maximum likelihood estimation
various factor rotation algorithms
adaptive
adaptive cognitive diagnosis
other adaption model
standard error and P value
code annotation, testing and documentation.
DINA Model and Parameter Estimation: A Didactic__
Higher-order latent trait models for cognitive diagnosis__
Full-Information Item Factor Analysis.__
Multidimensional adaptive testing__
Derivative free gradient projection algorithms for rotation__