awesome-holistic-3d

by holistic-3d

holistic-3d / awesome-holistic-3d

A list of papers and resources (data,code,etc) for holistic 3D reconstruction in computer vision

312 Stars 41 Forks Last release: Not found 37 Commits 0 Releases

Available items

No Items, yet!

The developer of this repository has not created any items for sale yet. Need a bug fixed? Help with integration? A different license? Create a request here:

Holistic 3D Reconstruction

A list of papers and resources for holistic 3D reconstruction.

Related Tutorials and Workshops

Datasets

Scene level

| Datasets |#Scenes| #Rooms | #Frames | Annotated Structures | |------------|---------|---------|---------|---------| | PlaneRCNN | ~1,500 | ~1,500 | 100,000 (randomly sampled from 1 million) | planes | | Replica | 18 | n/a | - | planes | | Wireframe | - | - | 5,462 | wireframe (2D) | | Wireframe Reconstruction | synthetic and real images | - | - | wireframe (3D) | | SUN Primitive | - | - | 785 | cuboid, pyramid, cylinder, sphere, etc. | | LSUN Room Layout | - | n/a | 5,394 | cuboid layout | | PanoContext | - | n/a | 500 (pano) | cuboid layout | | LayoutNet | - | n/a | 1,071 (pano) | cuboid layout | | MatterportLayout | - | n/a | 2,295 (RGB-D pano) | Manhattan layout | | Floor-SP | 100 | 707 | ~1500 (every scene has a set of RGB-D pano) | floorplan (with non-Manhattan structures) | | FloorNet | ~150 | ~1000 | - | floorplan | | Raster-to-Vector | 870 | - | - | floorplan | | 3RScan | 478 | - | - | objects | | Structured3D | 3,500 | 21,835 | 196,515 | pritimitves (points/lines/planes) and relationships, 3D object instance bounding boxes|

Object level

| Datasets |#Images | #Categories | #3D models | Annotated Structures | Notes | |------------|---------|---------|---------|---------|---------| | Keypoint-5 | 8,649 | 5 | - | keypoints | | | IKEA Keypoints | 759 | | 219 | keypoints | derived from IKEA 3D | | ANSI Mechanical Component | - | 504 | 17,197 | plane, sphere, cylinder, cone, etc.| | | PartNet | - | 24 | 26,671 | fine-grained, instance-level, and hierarchical 3D parts | derived from ShapeNet | | PartNet-Symh | - | 24 | 22,369 | Symmetry hierarchical 3D parts | derived from PartNet | | StructureNet | - | 6 | - | Symmetry hierarchical 3D parts | derived from PartNet |

Datasets examples

PlaneRCNN

From left to right: input RGB image, planar segmentation, depthmap

Wireframe

First row: manually labelled line segments. Second row: groundtruth junctions

Wireframe Reconstruction

From left column to right column: input image with groundtruth wireframes, predicted 3D wireframe and alternative view of the same image

SUN Primitive

Yellow: groundtruth, green: correct detection, red: false alarm

LSUN Room Layout

From left right: input RGB image, room layout (corner-representation), room layout (segmentation-representation)

PanoContext

From left to right: a single-view panorama, object detection and 3D reconstruction

LayoutNet

Orange lines: predicted layout, Green lines: groundtruth layout

Raster-to-Vector

From left to right: an input floorplan image, reconstructed vector-graphics representation visualized by custom renderer, and a popup 3D model

Floor-SP

From left to right: stitched RGB-D panorama of indoor scenes & top-view point density/normal map, vector-graphics floorplan with non-Manhattan structures

Structured3D

(a) house designs (b) ground truth 3D structure annotations (c) photo-realistic 2D images

Keypoint-5 and IKEA Keypoints

Left: input image, right: labeled 2D keypoints

ANSI Mechanical Component

Up to down: input point cloud and geometric primitives

PartNet

From left column to right column:Three levels(from coarse to fine-grained) of segmentation annotations in the hierarchy,for three segmentation tasks

PartNet-Symh

Odd rows: groundtruth fine-grained segmentation results, even rows: prediction fine-grained segmentation results

References

Books

  • Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry. An Invitation to 3D Vision: From Images to Geometric Models. Springer Verlag, 2003.
  • R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2000.

Papers - Scene level

2020 - J. Zheng, J. Zhang, J. Li, R. Tang, S. Gao, and Z. Zhou. Structured3D: A Large Photo-realistic Dataset for Structured 3D Modeling. In ECCV, 2020. [project] - Y. Qian, and Y. Furukawa. Learning Inter-Plane Relations for Piecewise Planar Reconstruction. In ECCV, 2020. - Y. Nie, X. Han, S. Guo, Y. Zheng, J. Chang, and J. J. Zhang. Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes From a Single Image. In CVPR, 2020. [project] - Z. Jiang, B. Liu, S. Schulter, Z. Wang, and M. Chandraker. Peek-a-Boo: Occlusion Reasoning in Indoor Scenes With Plane Representations. In CVPR, 2020. [paper] - H. Zeng, K. Joseph, A. Vest, and Y. Furukawa. Bundle Pooling for Polygonal Architecture Segmentation Problem. In CVPR, 2020. [Paper] - F. Zhang, N. Nauata, and Y. Furukawa. Conv-MPN: Convolutional Message Passing Neural Network for Structured Outdoor Architecture Reconstruction. In CVPR, 2020. [project]

2019 - Y. Zhou, H. Qi, and Y. Ma. NeurVPS: Neural Vanishing Point Scanning via Conic Convolution. In NeurIPS, 2019. [project] - Y. Zhou, H. Qi, and Y. Ma. End-to-End Wireframe Parsing. In ICCV, 2019. [project] - Y. Zhou, H. Qi, Y. Zhai, Q. Sun, Z. Chen, L. Wei, and Y. Ma. Learning to Reconstruct 3D Manhattan Wireframes from a Single Image. In ICCV, 2019. [project] - J. Chen, C. Liu, J. Wu, and Y. Furukawa. Floor-SP: Inverse CAD for Floorplans by Sequential Room-wise Shortest Path. In ICCV, 2019. [project] - J. Wald, A. Avetisyan, N. Navab, F. Tombari, and M. Niessner. RIO: 3D Object Instance Re-Localization in Changing Indoor Environments. In ICCV, 2019. [project] - C. Zou, J.-W. Su, C.-H. Peng, A. Colburn, Q. Shan, P. Wonka, H.-K. Chu, and D. Hoiem. 3D Manhattan Room Layout Reconstruction from a Single 360 Image, 2019. arXiv:1910.04099, 2019. [project] - C. Liu, K. Kim, J. Gu, Y. Furukawa, and J. Kautz. PlaneRCNN: 3D Plane Detection and Reconstruction from a Single Image. In CVPR, 2019. [project] - Z. Yu, J. Zheng, D. Lian, Z. Zhou, and S. Gao. Single-Image Piece-wise Planar 3D Reconstruction via Associative Embedding. In CVPR, 2019. [project] - Z. Zhang, Z. Li, N. Bi, J. Zheng, J. Wang, K. Huang, W. Luo, Y. Xu, and S. Gao. PPGNet: Learning Point-Pair Graph for Line Segment Detection. In CVPR, 2019. [project]

2018 - F. Yang and Z. Zhou. Recovering 3D planes from a single image via convolutional neural networks. In ECCV, 2018. [project] - H. Zeng, J. Wu, and Y. Furukawa. Neural Procedural Reconstruction for Residential Buildings. In ECCV, 2018. [paper] - C. Liu, J. Yu, and Y. Furukawa. FloorNet: A Unified Framework for Floorplan Reconstruction from 3D Scans. In ECCV 2018. [project] - C. Zou, A. Colburn, Q. Shan, and D. Hoiem. LayoutNet: Reconstructing the 3d room layout from a single RGB image. In CVPR, 2018. [project] - C. Liu, J. Yang, D. Ceylan, E. Yumer, and Y. Furukawa. PlaneNet: Piece-wise Planar Reconstruction from a Single RGB Image. In CVPR, 2018. [project] - K. Huang, Y. Wang, Z. Zhou, T. Ding, S. Gao, and Y. Ma. Learning to parse wireframes in images of man-made environments. In CVPR, 2018. [project] - H. Fang, F. Lafarge and M. Desbrun. Planar Shape Detection at Structural Scales. In CVPR, 2018. [paper]

2017 - L. Nan and P. Wonka. PolyFit: Polygonal Surface Reconstruction from Point Clouds. In ICCV, 2017. [project] - C. Liu, J. Wu, P. Kohli, and Y. Furukawa. Raster-to-Vector: Revisiting Floorplan Transformation. In ICCV, 2017. [project] - C. Lee, V. Badrinarayanan, T. Malisiewicz, and A. Rabinovich. RoomNet: End-to-end room layout estimation. In ICCV, 2017. [paper] - H. Izadinia, Q. Shan, and S. M. Seitz. IM2CAD. In CVPR, 2017. [project] - E. Wijmans and Y. Furukawa. Exploiting 2D Floorplan for Building-scale Panorama RGBD Alignment. In CVPR, 2017. [project] - T. Kelly, J. Femiani, P. Wonka, and N. Mitra. BigSUR: Large-scale Structured Urban Reconstruction. In SIGGRAPH Asia, 2017. [paper]

2016 - M. Li, P. Wonka, and L. Nan. Manhattan-world Urban Reconstruction from Point Clouds. In ECCV, 2016. [paper] - C. Zhu, Z. Zhou, Z. Xing, Y. Dong, Y. Ma, and J. Yu. Robust Plane-based Calibration of Multiple Non-Overlapping Cameras. In 3DV, 2016. [paper] - C. Liu, P. Kohli, and Y. Furukawa. Layered Scene Decomposition via the Occlusion-CRF. In CVPR, 2016. [project] - S. Dasgupta, K. Fang, K. Chen, and S. Savarese. Delay: Robust spatial layout estimation for cluttered indoor scenes. In CVPR, 2016. [paper] - S. Oesau, F. Lafarge and P. Alliez. Planar Shape Detection and Regularization in Tandem. Computer Graphics Forum, 2016. [paper]

2015 - S. Ikehata, H. Yan, and Y. Furukawa. Structured Indoor Modeling. In ICCV, 2015. [paper] - O. Haines and A. Calway. Recognising planes in a single image. IEEE TPAMI, 2015. [paper] - A. Monszpart, N. Mellado, G. J. Brostow, and N. J. Mitra. RAPTER: Rebuilding Man-made Scenes with Regular Arrangements of Planes. In SIGGRAPH, 2015. [paper] - J. Favreau, F. Lafarge, and A. Bousseau. Line Drawing Interpretation in a Multi-View Context. In CVPR, 2015.

2014 - D. F. Fouhey, A. Gupta, and M. Hebert. Unfolding an indoor origami world. In ECCV, 2014. [paper] - R. Cabral and Y. Furukawa. Piecewise Planar and Compact Floorplan Reconstruction from Images. In CVPR 2014. [paper] - D. Ceylan, N. J. Mitra, Y. Zheng, M. Pauly. Coupled Structure-from-Motion and 3D Symmetry Detection for Urban Facades. ACM Transactions on Graphics, 2014. [paper]

2013 - S. Ramalingam and M. Brand. Lifting 3D manhattan lines from a single image. In ICCV, 2013. [paper] - S. Ramalingam, J. K. Pillai, A. Jain, and Y. Taguchi. Manhattan junction catalogue for spatial reasoning of indoor scenes. In CVPR, 2013. [paper] - Z. Zhou, H. Jin, and Y. Ma. Plane-Based Content-Preserving Warps for Video Stabilization. In CVPR, 2013. [paper] - N. J. Mitra, M. Pauly, M. Wand, and D. Ceylan. Symmetry in 3D Geometry: Extraction and Applications. Computer Graphics Forum, 2013. [paper]

2012 - J. Xiao, B. C. Russell, and A. Torralba. Localizing 3d cuboids in single-view images. In NIPS, 2012. [paper] - J. Xiao and Y. Furukawa. Reconstructing the World's Museums. In ECCV, 2012. [paper] - Z. Zhou, H. Jin, and Y. Ma. Robust Plane-Based Structure From Motion. In CVPR, 2012. [paper] - A. Cohen, C. Zach, S. N. Sinha and M. Pollefeys. Discovering and exploiting 3D symmetries in structure from motion. In CVPR, 2012. [paper] - C. A. Vanegas, D. G. Aliaga, and B. Benes. Automatic Extraction of Manhattan-World Building Masses from 3D Laser Range Scans. IEEE TVCG, 2012. [paper]

2011 - H. Mobahi, Z. Zhou, A. Y. Yang, and Y. Ma. Holistic Reconstruction of Urban Structures from Low-rank Textures. In ICCV-3dRR, 2011. [paper] - Z. Zhang, X. Liang, and Y. Ma. Unwrapping Low-rank Textures on Generalized Cylindrical Surfaces. In ICCV, 2011. [paper] - A. Flint, D. W. Murray, and I. Reid. Manhattan scene understanding using monocular, stereo, and 3D features. In ICCV, 2011. [paper] - C. Wu, J.-M. Frahm, and M. Pollefeys. Repetition-based dense single-view reconstruction. In CVPR, 2011. [paper] - A. Elqursh and A. M. Elgammal. Line-based relative pose estimation. In CVPR, 2011. [paper] - Z. Zhang, Y. Matsushita, and Y. Ma. Camera Calibration with Lens Distortion from Low-rank Textures. In CVPR, 2011. [paper]

2010 and before - D. Gallup, J.-M. Frahm, and M. Pollefeys. Piecewise Planar and Non-Planar Stereo for Urban Scene Reconstruction. In CVPR, 2010. [paper] - Y. Furukawa, B. Curless, S. M. Seitz and R. Szeliski. Reconstructing Building Interiors from Images. In ICCV, 2009. [paper] - V. Hedau, D. Hoiem, and D. A. Forsyth. Recovering the spatial layout of cluttered rooms. In ICCV, 2009. [paper] - Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. Manhattan-world stereo. In CVPR, 2009. [paper] - D.C. Lee, M. Hebert, and T. Kanade. Geometric Reasoning for Single Image Structure Recovery. In CVPR, 2009. [paper] - G. Schindler, P. Krishnamurthy, R. Lublinerman, Y. Liu, and F. Dellaert. Detecting and Matching Repeated Patterns for Automatic Geo-tagging in Urban Environments. In CVPR, 2008. [paper] - B. Micusik, H. Wildenauer, and J. Kosecka. Detection and matching of rectilinear structures. In CVPR, 2008. [paper] - D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface layout from an image. IJCV, 2007. [paper] - G. Schindler, P. Krishnamurthy, and F. Dellaert. Line-Based Structure From Motion for Urban Environments. In 3DPVT, 2006. [paper] - J. M. Coughlan and A. L. Yuille. Manhattan world: Orientation and outlier detection by bayesian inference. Neural Computation, 2003. [paper] - A. Bartoli and P. Sturm. Constrained structure and motion from multiple uncalibrated views of a piecewise planar scene. IJCV, 2003. [paper] - J. Kosecka, and W. Zhang. Video Compass. In ECCV, 2002. [paper] - A. P. Witkin and J. M. Tenenbaum. On the role of structure in vision. In J. Beck, B. Hope, and A. Rosenfeld, editors, Human and Machine Vision, pages 481–543. Academic Press, 1983. [paper]

Papers - Object level

2020 - M. Gadelha, G. Gori, D. Ceylan, R. Měch, M. Carr, T. Boubekeur, R. Wang, S. Maji. Learning Generative Models of Shape Handles. In CVPR, 2020.

2019 - K. Mo, P. Guerrero, L. Yi, H. Su, P. Wonka, N. J. Mitra, and L. Guibas. StructureNet: Hierarchical Graph Networks for 3D Shape Generation. In SIGGRAPH Asia, 2019. [project] - C. Sun, Q. Zou, X. Tong, and Y. Liu. Learning Adaptive Hierarchical Cuboid Abstractions of 3D Shape Collections. In SIGGRAPH Asia, 2019. [project] - D. Paschalidou, A. O. Ulusoy, and A. Geiger. Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids. In CVPR, 2019. [paper] - L. Li, M. Sung, A. Dubrovina, L. Yi, and L. Guibas. Supervised Fitting of Geometric Primitives to 3D Point Clouds. In CVPR, 2019. [paper]

2018 - J. Wu, T. Xue, J. J. Lim, Y. Tian, J. B. Tenenbaum, A. Torralba, and W. T. Freeman. 3d interpreter networks for viewer centered wireframe modeling. IJCV, 2018. [project] - C. Niu, J. Li, and K. Xu. Im2struct: Recovering 3d shape structure from a single RGB image. In CVPR, 2018. [project]

2017 - C. Zou, E. Yumer, J. Yang, D. Ceylan, and D. Hoiem. 3D-PRNN: Generating Shape Primitives with Recurrent Neural Networks. In ICCV, 2017. [paper] - S. Tulsiani, H. Su, L. J. Guibas, A. A. Efros, and J. Malik. Learning Shape Abstractions by Assembling Volumetric Primitives. In CVPR, 2017. [project]

2013 - L. Yang, J. Liu, and X. Tang. Complex 3D General Object Reconstruction from Line Drawings. In ICCV, 2013. [paper] - N. J. Mitra, M. Wand, H. Zhang, D. Cohen-Or, and M. Bokeloh. Structure-Aware Shape Processing. In EUROGRAPHICS, 2013. [project]

2012 - S. N. Sinha, K. Ramnath, and R. Szeliski. Detecting and Reconstructing 3D Mirror Symmetric Objects. In ECCV, 2012. [paper] - T. Xue, Y. Li, J. Liu, and X. Tang. Example-Based 3D Object Reconstruction from Line Drawings. In CVPR, 2012. [paper]

2011 - Y. Li, X. Wu, Y. Chrysathou, A. Sharf, D. Cohen-Or, and N. J. Mitra. GlobFit: Consistently Fitting Primitives by Discovering Global Relations. In SIGGRAPH, 2011. [project]

2010 and before - T. Xue, J. Liu, and X. Tang. Object Cut: Complex 3D object reconstruction through line drawing separation. In CVPR 2010. [paper] - M. Bokeloh, A. Berner, M. Wand, H. P. Seidel, and A. Schilling. Symmetry Detection Using Feature Lines. In EUROGRAPHICS, 2009. [paper] - L. Cao, J. Liu, and X. Tang. What the Back of the Object Looks Like: 3D Reconstruction from Line Drawings without Hidden Lines. PAMI 2008. [paper] - M. Pauly, N. J. Mitra, J. Wallner, H. Pottmann, and L. J. Guibas. Discovering Structural Regularity in 3D Geometry. In SIGGRAPH, 2008. [paper] - Y. Wang, Y. Chen, J. Liu, and X. Tang. 3D Reconstruction of Curved Objects from Single 2D Line Drawings. In CVPR, 2008. [paper] - Y. Chen, J. Liu, and X. Tang. A Divide-and-Conquer Approach to 3D Object Reconstruction from Line Drawings. In ICCV 2007. [paper] - N. J. Mitra, L. Guibas, and M. Pauly. Partial and Approximate Symmetry Detection for 3D Geometry. ACM ToG, 2006. [paper] - J. Malik. Interpreting line drawings of curved objects. IJCV, 1987. [paper] - K. Sugihara. Mathematical structures of line drawings of polyhedrons-toward man-machine communication by means of line drawings. IEEE TPAMI, 1982. [paper]

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.