Need help with next-prediction?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

297 Stars 85 Forks Apache License 2.0 25 Commits 0 Opened issues


Code and model for "Peeking into the Future: Predicting Future Person Activities and Locations in Videos", Liang et al, CVPR 2019

Services available


Need anything else?

Contributors list


This repository contains the code and models for the following paper:

Peeking into the Future: Predicting Future Person Activities and Locations in Videos \ Junwei Liang, Lu Jiang, Juan Carlos Niebles, Alexander Hauptmann, Li Fei-Fei \ CVPR 2019

You can find more information at our Project Page.\ Please note that this is not an officially supported Google product.

  • [02/2020] New paper on multi-future trajectory prediction is accepted by CVPR 2020.

If you find this code useful in your research then please cite

  author = {Liang, Junwei and Jiang, Lu and Carlos Niebles, Juan and Hauptmann, Alexander G. and Fei-Fei, Li},
  title = {Peeking Into the Future: Predicting Future Person Activities and Locations in Videos},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2019}


In applications like self-driving cars and smart robot assistant it is important for a system to be able to predict a person's future locations and activities. In this paper we present an end-to-end neural network model that deciphers human behaviors to predict their future paths/trajectories and their future activities jointly from videos.

Below we show an example of the task. The green and yellow line show two possible future trajectories and two possible activities are shown in the green and yellow boxes. Depending on the future activity, the target person(top right) may take different paths, e.g. the yellow path for “loading” and the green path for “object transfer”.


Given a sequence of video frames containing the person for prediction, our model utilizes person behavior module and person interaction module to encode rich visual semantics into a feature tensor. We propose novel person interaction module that takes into account both person-scene and person-object relations for joint activities and locations prediction.


  • Python 2.7; TensorFlow == 1.10.0 (Should also work on 1.14+)
  • [10/2020] Now it is compatible with Python 3.6 and Tensorflow 1.15

Pretrained Models

You can download pretrained models by running the script

bash scripts/
. This will download the following models, and will require about 5.8 GB of disk space:
  • next-models/actev_single_model/
    : This folder includes single model for the ActEv experiment.
  • next-models/ethucy_single_model/
    : This folder includes five single models for the ETH/UCY leave-one-scene-out experiment.


Instructions for testing pretrained models can be found here.

Training new models

Instructions for training new models can be found here.

Preparing Rich Visual Features

Instructions for extracting features can be found here.


The preprecessing code and evaluation code for trajectories were adapted from Social-GAN.

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.