Need help with pytorch-ddpg?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

ghliu
264 Stars 87 Forks Apache License 2.0 15 Commits 3 Opened issues

Description

Implementation of the Deep Deterministic Policy Gradient (DDPG) using PyTorch

Services available

!
?

Need anything else?

Contributors list

# 129,064
Python
openai-...
ddpg
pytorch
13 commits
# 327,534
Python
openai-...
ddpg
pytorch
1 commit

======

Deep Deterministic Policy Gradient on PyTorch

Overview

The is the implementation of

Deep Deterministic Policy Gradient 
_ (DDPG) using
PyTorch 
. Part of the utilities functions such as replay buffer and random process are from
keras-rl 
repo. Contributes are very welcome.

Dependencies

  • Python 3.4
  • PyTorch 0.1.9
  • OpenAI Gym 
    _

Run

  • Training : results of two environment and their training curves:

    • Pendulum-v0

    .. code-block:: console

    $ ./main.py --debug
    

    .. image:: output/Pendulum-v0-run0/validate_reward.png :width: 800px :align: left :height: 600px :alt: alternate text * MountainCarContinuous-v0

    .. code-block:: console

    $ ./main.py --env MountainCarContinuous-v0 --validate_episodes 100 --max_episode_length 2500 --ou_sigma 0.5 --debug
    

    .. image:: output/MountainCarContinuous-v0-run0/validate_reward.png :width: 800px :align: left :height: 600px :alt: alternate text

  • Testing :

.. code-block:: console

$ ./main.py --mode test --debug

TODO

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.