TPA-LSTM

by gantheory

gantheory / TPA-LSTM

Temporal Pattern Attention for Multivariate Time Series Forecasting

280 Stars 93 Forks Last release: Not found 6 Commits 0 Releases

Available items

No Items, yet!

The developer of this repository has not created any items for sale yet. Need a bug fixed? Help with integration? A different license? Create a request here:

TPA-LSTM

Original Implementation of ''Temporal Pattern Attention for Multivariate Time Series Forecasting''.

Dependencies

  • python3.6.6

You can check and install other dependencies in

requirements.txt
.
$ pip install -r requirements.txt
# to install TensorFlow, you can refer to https://www.tensorflow.org/install/

Usage

The following example usage shows how to train and test a TPA-LSTM model on MuseData with settings used in this work.

Training

$ python main.py --mode train \
    --attention_len 16 \
    --batch_size 32 \
    --data_set muse \
    --dropout 0.2 \
    --learning_rate 1e-5 \
    --model_dir ./models/model \
    --num_epochs 40 \
    --num_layers 3 \
    --num_units 338

Testing

$ python main.py --mode test \
    --attention_len 16 \
    --batch_size 32 \
    --data_set muse \
    --dropout 0.2 \
    --learning_rate 1e-5 \
    --model_dir ./models/model \
    --num_epochs 40 \
    --num_layers 3 \
    --num_units 338

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.