Need help with DeepBSDE?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

frankhan91
144 Stars 80 Forks MIT License 6 Commits 0 Opened issues

Description

Deep BSDE solver in TensorFlow

Services available

!
?

Need anything else?

Contributors list

# 198,811
C++
C
Shell
partial...
6 commits

Deep BSDE Solver in TensorFlow (2.0)

Training

python main.py --config_path=configs/hjb_lq_d100.json

Command-line flags:

  • config_path
    : Config path corresponding to the partial differential equation (PDE) to solve. There are seven PDEs implemented so far. See Problems section below.
  • exp_name
    : Name of numerical experiment, prefix of logging and output.
  • log_dir
    : Directory to write logging and output array.

Problems

equation.py
and
config.py
now support the following problems:

Three examples in ref [1]: *

HJBLQ
: Hamilton-Jacobi-Bellman (HJB) equation. *
AllenCahn
: Allen-Cahn equation with a cubic nonlinearity. *
PricingDefaultRisk
: Nonlinear Black-Scholes equation with default risk in consideration.

Four examples in ref [2]: *

PricingDiffRate
: Nonlinear Black-Scholes equation for the pricing of European financial derivatives with different interest rates for borrowing and lending. *
BurgersType
: Multidimensional Burgers-type PDEs with explicit solution. *
QuadraticGradient
: An example PDE with quadratically growing derivatives and an explicit solution. *
ReactionDiffusion
: Time-dependent reaction-diffusion-type example PDE with oscillating explicit solutions.

New problems can be added very easily. Inherit the class

equation
in
equation.py
and define the new problem. Note that the generator function and terminal function should be TensorFlow operations while the sample function can be python operation. A proper config is needed as well.

Dependencies

Note: an old version of the deep BSDE solver compatiable with TensorFlow 1.12 and Python 2 can be found in the commit 9d4e332.

Reference

[1] Han, J., Jentzen, A., and E, W. Overcoming the curse of dimensionality: Solving high-dimensional partial differential equations using deep learning, Proceedings of the National Academy of Sciences, 115(34), 8505-8510 (2018). [journal] [arXiv]
[2] E, W., Han, J., and Jentzen, A. Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations, Communications in Mathematics and Statistics, 5, 349–380 (2017). [journal] [arXiv]

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.