Need help with parameters?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

easystats
246 Stars 25 Forks GNU General Public License v3.0 3.4K Commits 44 Opened issues

Description

:bar_chart: Computation and processing of models' parameters

Services available

!
?

Need anything else?

Contributors list

parameters

DOI downloads total


:warning: For Bayesian models, we changed the default the CI width! Please make an informed decision and set it explicitly (

ci = 0.89
,
ci = 0.95
, or anything else that you decide) :warning:

Describe and understand your model’s parameters!

parameters’ primary goal is to provide utilities for processing the parameters of various statistical models (see here for a list of supported models). Beyond computing p-values, CIs, Bayesian indices and other measures for a wide variety of models, this package implements features like bootstrapping of parameters and models, feature reduction (feature extraction and variable selection), or tools for data reduction like functions to perform cluster, factor or principal component analysis.

Another important goal of the parameters package is to facilitate and streamline the process of reporting results of statistical models, which includes the easy and intuitive calculation of standardized estimates or robust standard errors and p-values. parameters therefor offers a simple and unified syntax to process a large variety of (model) objects from many different packages.

Installation

CRAN R-check

Run the following to install the stable release of parameters from CRAN:

install.packages("parameters")

Or this one to install the latest development version from R-universe…

install.packages("parameters", repos = "https://easystats.r-universe.dev")

…or from GitHub:

install.packages("remotes")
remotes::install_github("easystats/parameters")

Documentation

Documentation Blog Features

Click on the buttons above to access the package documentation and the easystats blog, and check-out these vignettes:

Contributing and Support

In case you want to file an issue or contribute in another way to the package, please follow this guide. For questions about the functionality, you may either contact us via email or also file an issue.

Features

Model’s parameters description

The

model_parameters()
function (that can be accessed via the

parameters()
shortcut) allows you to extract the parameters and their characteristics from various models in a consistent way. It can be considered as a lightweight alternative to
broom::tidy()
, with some notable differences:
  • The column names of the returned data frame are specific to their content. For instance, the column containing the statistic is named following the statistic name, i.e., t, z, etc., instead of a generic name such as statistic (however, you can get standardized (generic) column names using
    standardize_names()
    ).
  • It is able to compute or extract indices not available by default, such as p-values, CIs, etc.
  • It includes feature engineering capabilities, including parameters bootstrapping.

Classical Regression Models

model  Parameter                           | Coefficient |   SE |         95% CI | t(143) |      p
#> -------------------------------------------------------------------------------------------
#> (Intercept)                         |        2.89 | 0.36 | [ 2.18,  3.60] |   8.01 | < .001
#> Petal Length                        |        0.26 | 0.25 | [-0.22,  0.75] |   1.07 | 0.287 
#> Species [versicolor]                |       -1.66 | 0.53 | [-2.71, -0.62] |  -3.14 | 0.002 
#> Species [virginica]                 |       -1.92 | 0.59 | [-3.08, -0.76] |  -3.28 | 0.001 
#> Petal Width                         |        0.62 | 0.14 | [ 0.34,  0.89] |   4.41 | < .001
#> Petal Length * Species [versicolor] |       -0.09 | 0.26 | [-0.61,  0.42] |  -0.36 | 0.721 
#> Petal Length * Species [virginica]  |       -0.13 | 0.26 | [-0.64,  0.38] |  -0.50 | 0.618
# standardized parameters
model_parameters(model, standardize = "refit")
#> Parameter                           | Coefficient |   SE |         95% CI | t(143) |      p
#> -------------------------------------------------------------------------------------------
#> (Intercept)                         |        3.59 | 1.30 | [ 1.01,  6.17] |   2.75 | 0.007 
#> Petal Length                        |        1.07 | 1.00 | [-0.91,  3.04] |   1.07 | 0.287 
#> Species [versicolor]                |       -4.62 | 1.31 | [-7.21, -2.03] |  -3.53 | < .001
#> Species [virginica]                 |       -5.51 | 1.38 | [-8.23, -2.79] |  -4.00 | < .001
#> Petal Width                         |        1.08 | 0.24 | [ 0.59,  1.56] |   4.41 | < .001
#> Petal Length * Species [versicolor] |       -0.38 | 1.06 | [-2.48,  1.72] |  -0.36 | 0.721 
#> Petal Length * Species [virginica]  |       -0.52 | 1.04 | [-2.58,  1.54] |  -0.50 | 0.618

Mixed Models

library(lme4)

model # Fixed Effects #> #> Parameter | Coefficient | SE | 95% CI | t(146) | p #> ------------------------------------------------------------------ #> (Intercept) | 2.00 | 0.56 | [0.89, 3.11] | 3.56 | < .001 #> Petal Length | 0.28 | 0.06 | [0.16, 0.40] | 4.75 | < .001 #> #> # Random Effects #> #> Parameter | Coefficient #> ------------------------------------- #> SD (Intercept: Species) | 0.89 #> SD (Residual) | 0.32

model parameters with CI, df and p-values based on Kenward-Roger approximation

model_parameters(model, df_method = "kenward") #> # Fixed Effects #> #> Parameter | Coefficient | SE | 95% CI | t | df | p #> ------------------------------------------------------------------------- #> (Intercept) | 2.00 | 0.57 | [0.07, 3.93] | 3.53 | 2.67 | 0.046 #> Petal Length | 0.28 | 0.06 | [0.16, 0.40] | 4.58 | 140.98 | < .001 #> #> # Random Effects #> #> Parameter | Coefficient #> ------------------------------------- #> SD (Intercept: Species) | 0.89 #> SD (Residual) | 0.32

Structural Models

Besides many types of regression models and packages, it also works for other types of models, such as structural models (EFA, CFA, SEM…).

library(psych)

model # Rotated loadings from Factor Analysis (oblimin-rotation) #> #> Variable | MR1 | MR2 | MR3 | Complexity | Uniqueness #> ------------------------------------------------------------ #> rating | 0.90 | -0.07 | -0.05 | 1.02 | 0.23
#> complaints | 0.97 | -0.06 | 0.04 | 1.01 | 0.10
#> privileges | 0.44 | 0.25 | -0.05 | 1.64 | 0.65
#> learning | 0.47 | 0.54 | -0.28 | 2.51 | 0.24
#> raises | 0.55 | 0.43 | 0.25 | 2.35 | 0.23
#> critical | 0.16 | 0.17 | 0.48 | 1.46 | 0.67
#> advance | -0.11 | 0.91 | 0.07 | 1.04 | 0.22
#> #> The 3 latent factors (oblimin rotation) accounted for 66.60% of the total variance of the original data (MR1 = 38.19%, MR2 = 22.69%, MR3 = 5.72%).

Variable and parameters selection

select_parameters()
can help you quickly select and retain the most relevant predictors using methods tailored for the model type.

library(dplyr)

lm(disp ~ ., data = mtcars) %>% select_parameters() %>% model_parameters() #> Parameter | Coefficient | SE | 95% CI | t(26) | p #> ----------------------------------------------------------------------- #> (Intercept) | 141.70 | 125.67 | [-116.62, 400.02] | 1.13 | 0.270 #> cyl | 13.14 | 7.90 | [ -3.10, 29.38] | 1.66 | 0.108 #> hp | 0.63 | 0.20 | [ 0.22, 1.03] | 3.18 | 0.004 #> wt | 80.45 | 12.22 | [ 55.33, 105.57] | 6.58 | < .001 #> qsec | -14.68 | 6.14 | [ -27.31, -2.05] | -2.39 | 0.024 #> carb | -28.75 | 5.60 | [ -40.28, -17.23] | -5.13 | < .001

Miscellaneous

This packages also contains a lot of other useful functions:

Describe a Distribution

data(iris)
describe_distribution(iris)
#> Variable     | Mean |   SD |  IQR |        Range | Skewness | Kurtosis |   n | n_Missing
#> ----------------------------------------------------------------------------------------
#> Sepal.Length | 5.84 | 0.83 | 1.30 | [4.30, 7.90] |     0.31 |    -0.55 | 150 |         0
#> Sepal.Width  | 3.06 | 0.44 | 0.52 | [2.00, 4.40] |     0.32 |     0.23 | 150 |         0
#> Petal.Length | 3.76 | 1.77 | 3.52 | [1.00, 6.90] |    -0.27 |    -1.40 | 150 |         0
#> Petal.Width  | 1.20 | 0.76 | 1.50 | [0.10, 2.50] |    -0.10 |    -1.34 | 150 |         0

Citation

In order to cite this package, please use the following command:

citation("parameters")

Lüdecke D, Ben-Shachar M, Patil I, Makowski D (2020). "Extracting, Computing and Exploring the Parameters of Statistical Models using R." Journal of Open Source Software, 5(53), 2445. doi: 10.21105/joss.02445 (URL: https://doi.org/10.21105/joss.02445).

A BibTeX entry for LaTeX users is

@Article{, title = {Extracting, Computing and Exploring the Parameters of Statistical Models using {R}.}, volume = {5}, doi = {10.21105/joss.02445}, number = {53}, journal = {Journal of Open Source Software}, author = {Daniel Lüdecke and Mattan S. Ben-Shachar and Indrajeet Patil and Dominique Makowski}, year = {2020}, pages = {2445}, }

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.