Need help with Dlib_face_recognition_from_camera?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

coneypo
606 Stars 274 Forks MIT License 112 Commits 10 Opened issues

Description

Detect and recognize the faces from camera / 调用摄像头进行人脸识别,支持多张人脸同时识别

Services available

!
?

Need anything else?

Contributors list

Face recognition from camera with Dlib

Introduction


Detect and recognize single/multi-faces from camera;

调用摄像头进行人脸识别,支持多张人脸同时识别;

. 摄像头人脸录入 / Face register

.. image:: introduction/face_register.png :align: center

请不要离摄像头过近,人脸超出摄像头范围时会有 "OUT OF RANGE" 提醒 / Please do not be too close to the camera, or you can't save faces with "OUT OF RANGE" warning;

.. image:: introduction/faceregisterwarning.png :align: center

. 提取特征建立人脸数据库 / Generate database from images captured

. 利用摄像头进行人脸识别 / Face recognizer

当单张人脸 / When single-face:

.. image:: introduction/facerecosingle.png :align: center

利用 OT 对于单张人脸追踪/ Use OT to track, which can improve FPS from 1.x to 20.x:

.. image:: introduction/facerecosingle_ot.png :align: center

当多张人脸 / When multi-faces:

.. image:: introduction/facerecomulti.png :align: center

利用 OT 来实现 / When multi-faces with OT:

.. image:: introduction/facerecomulti_ot.png :align: center

定制显示名字, 可以写中文 / Customize names:

.. image:: introduction/facerecowith_name.png :align: center

** 关于精度 / About accuracy:

  • When using a distance threshold of
    0.6
    , the dlib model obtains an accuracy of
    99.38%
    on the standard LFW face recognition benchmark.

** 关于算法 / About algorithm

  • 基于 Residual Neural Network / 残差网络的 CNN 模型;

  • This model is a ResNet network with 29 conv layers. It's essentially a version of the ResNet-34 network from the paper Deep Residual Learning for Image Recognition by He, Zhang, Ren, and Sun with a few layers removed and the number of filters per layer reduced by half.

Overview


此项目中人脸识别的实现流程 (no OT, 每一帧都进行检测+识别) / The design of this repo:

.. image:: introduction/overview.png :align: center

实现流程(with OT, 初始帧进行检测+识别,后续帧检测+质心跟踪) / The design of this repo:

.. image:: introduction/overviewwithot.png :align: center

如果利用 OT 来跟踪,可以大大提高 FPS, 因为做识别时候需要提取特征描述子的耗时很多;

Steps


. 安装依赖库 / Install some python packages if needed

.. code-block:: bash

  pip3 install opencv-python
  pip3 install scikit-image
  pip3 install dlib

. 下载源码 / Download zip from website or via GitHub Desktop in windows, or git clone repo in Ubuntu

.. code-block:: bash

  git clone https://github.com/coneypo/Dlib_face_recognition_from_camera

. 进行人脸信息采集录入 / Register faces

.. code-block:: bash

  python3 get_face_from_camera.py

. 提取所有录入人脸数据存入 "featuresall.csv" / Features extraction and save into "featuresall.csv"

.. code-block:: bash

  python3 features_extraction_to_csv.py

. 调用摄像头进行实时人脸识别 / Real-time face recognition

.. code-block:: bash

  python3 face_reco_from_camera.py

. 或者利用 OT 算法,调用摄像头进行实时人脸识别/ Real-time face recognition with OT

.. code-block:: bash

  python3 face_reco_from_camera_ot_single_person.py
  python3 face_reco_from_camera_ot_multi_people.py

About Source Code


Repo 的 tree / 树状图:

::

.
├── get_faces_from_camera.py              # Step 1. Face register
├── features_extraction_to_csv.py         # Step 2. Feature extraction
├── face_reco_from_camera.py              # Step 3. Face recognizer
├── face_reco_from_camera_ot_single_person.py       # Step 3. Face recognizer with OT for single person
├── face_reco_from_camera_ot_multi_people.py        # Step 3. Face recognizer with OT for multi people
├── face_descriptor_from_camera.py        # Face descriptor computation
├── how_to_use_camera.py                  # Use the default camera by opencv
├── data
│   ├── data_dlib                         # Dlib's model
│   │   ├── dlib_face_recognition_resnet_model_v1.dat
│   │   └── shape_predictor_68_face_landmarks.dat
│   ├── data_faces_from_camera            # Face images captured from camera (will generate after step 1)
│   │   ├── person_1
│   │   │   ├── img_face_1.jpg
│   │   │   └── img_face_2.jpg
│   │   └── person_2
│   │       └── img_face_1.jpg
│   │       └── img_face_2.jpg
│   └── features_all.csv                  # CSV to save all the features of known faces (will generate after step 2)
├── README.rst
└── requirements.txt                      # Some python packages needed

用到的 Dlib 相关模型函数:

. Dlib 正向人脸检测器 (based on HOG), output:

.. code-block:: python

  detector = dlib.get_frontal_face_detector()
  faces = detector(img_gray, 0)

. Dlib 人脸 landmark 特征点检测器, output: ,

will use shapepredictor68facelandmarks.dat

.. code-block:: python

  # This is trained on the ibug 300-W dataset (https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/)
  # Also note that this model file is designed for use with dlib's HOG face detector.
  # That is, it expects the bounding boxes from the face detector to be aligned a certain way, the way dlib's HOG face detector does it.
  # It won't work as well when used with a face detector that produces differently aligned boxes,
  # such as the CNN based mmod_human_face_detector.dat face detector.

predictor = dlib.shape_predictor("data/data_dlib/shape_predictor_68_face_landmarks.dat") shape = predictor(img_rd, faces[i])

. Dlib 特征描述子 Face recognition model, the object maps human faces into 128D vectors

.. code-block:: python

  face_rec = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")

Python 源码介绍如下:

. getfacefrom_camera.py:

进行 Face register / 人脸信息采集录入

  • 请注意存储人脸图片时,矩形框不要超出摄像头范围,要不然无法保存到本地;
  • 超出会有 "out of range" 的提醒;

. featuresextractionto_csv.py:

从上一步存下来的图像文件中,提取人脸数据存入CSV;

  • 会生成一个存储所有特征人脸数据的 "features_all.csv";
  • size: n*128 , n means n people you registered and 128 means 128D features of the face

. facerecofrom_camera.py:

这一步将调用摄像头进行实时人脸识别; / This part will implement real-time face recognition;

  • Compare the faces captured from camera with the faces you have registered which are saved in "features_all.csv"

  • 将捕获到的人脸数据和之前存的人脸数据进行对比计算欧式距离, 由此判断是否是同一个人;

. facerecofromcameraotsingleperson/multi_people.py:

区别于 facerecofrom_camera.py (对每一帧都进行检测+识别),只会对初始帧做检测+识别,对后续帧做检测+质心跟踪;

. (optional) facedescriptorfrom_camera.py

调用摄像头进行实时特征描述子计算; / Real-time face descriptor computation;

More


Tips:

. 如果希望详细了解 dlib 的用法,请参考 Dlib 官方 Python api 的网站 / You can refer to this link for more information of how to use dlib: http://dlib.net/python/index.html

. Windows下建议不要把代码放到
C:\
, 可能会出现权限读取问题 / In windows, we will not recommend that running this repo in dir
C:\

. 代码最好不要有中文路径 / No chinese characters in your code directory

. 人脸录入的时候先建文件夹再保存图片, 先
N
S
/ Press
N
before
S

. 关于人脸识别卡顿 FPS 低问题, 原因是特征描述子提取很费时间, 光跑 facedescriptorfromcamera.py 中 facerecomodel.computeface_descriptor 在 CPU: i7-8700K 得到的最终 FPS: 5~6 (检测在 0.03s, 特征描述子提取在 0.158s, 和已知人脸进行遍历对比在 0.003s 左右), 所以主要提取特征时候耗资源, 可以用 OT 去做追踪,而不是对每一帧都做检测+识别

可以访问我的博客获取本项目的更详细介绍,如有问题可以邮件联系我 / For more details, please refer to my blog (in chinese) or mail to me :

  • Blog: https://www.cnblogs.com/AdaminXie/p/9010298.html

  • 关于 OT 部分的更新在 Blog: https://www.cnblogs.com/AdaminXie/p/13566269.html

  • Mail: [email protected] ( Dlib 相关 repo 问题请联系 @foxmail 而不是 @intel )

Thanks for your support.

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.