MobileNetv2-SSDLite

by chuanqi305

Caffe implementation of SSD and SSDLite detection on MobileNetv2, converted from tensorflow.

421 Stars 229 Forks Last release: Not found MIT License 25 Commits 0 Releases

Available items

No Items, yet!

The developer of this repository has not created any items for sale yet. Need a bug fixed? Help with integration? A different license? Create a request here:

MobileNetv2-SSDLite

Caffe implementation of SSD detection on MobileNetv2, converted from tensorflow.

Prerequisites

Tensorflow and Caffe version SSD is properly installed on your computer.

Usage

  1. Firstly you should download the original model from tensorflow.
  2. Use genmodel.py to generate the train.prototxt and deploy.prototxt (or use the default prototxt). ``` python genmodel.py -s deploy -c 91 >deploy.prototxt ```
  3. Use dumptensorflowweights.py to dump the weights of conv layer and batchnorm layer.
  4. Use loadcaffeweights.py to load the dumped weights to deploy.caffemodel.
  5. Use the code in src to accelerate your training if you have a cudnn7, or add "engine: CAFFE" to your depthwise convolution layer to solve the memory issue.
  6. The original tensorflow model is trained on MSCOCO dataset, maybe you need deploy.caffemodel for VOC dataset, use coco2voc.py to get deploy_voc.caffemodel.

Train your own dataset

  1. Generate the trainvallmdb and testlmdb from your dataset.
  2. Write a labelmap.prototxt
  3. Use genmodel.py to generate some prototxt files, replace the "CLASSNUM" with class number of your own dataset.
    python gen_model.py -s train -c CLASS_NUM >train.prototxt
    python gen_model.py -s test -c CLASS_NUM >test.prototxt
    python gen_model.py -s deploy -c CLASS_NUM >deploy.prototxt
    
  4. Copy coco/solver_train.prototxt and coco/train.sh to your project and start training.

Note

There are some differences between caffe and tensorflow implementation: 1. The padding method 'SAME' in tensorflow sometimes use the [0, 0, 1, 1] paddings, means that top=0, left=0, bottom=1, right=1 padding. In caffe, there is no parameters can be used to do that kind of padding. 2. MobileNet on Tensorflow use ReLU6 layer y = min(max(x, 0), 6), but caffe has no ReLU6 layer. Replace ReLU6 with ReLU cause a bit accuracy drop in ssd-mobilenetv2, but very large drop in ssdlite-mobilenetv2. There is a ReLU6 layer implementation in my fork of ssd.

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.