Need help with celo-blockchain?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

celo-org
241 Stars 76 Forks GNU Lesser General Public License v3.0 12.6K Commits 148 Opened issues

Description

Official repository for the golang Celo Blockchain

Services available

!
?

Need anything else?

Contributors list

# 383
Go
C
Shell
Ethereu...
2620 commits
# 725
Go
C
Shell
Blockch...
1287 commits
# 979
Go
C
Emacs
Blockch...
973 commits
# 1,881
Shell
Blockch...
meteor
Electro...
523 commits
# 2,993
Shell
Go
Blockch...
C
325 commits
# 2,641
C
Shell
Go
Blockch...
259 commits
# 4,543
TeX
Shell
Go
ethereu...
185 commits
# 2,673
Ethereu...
swarm
circlec...
Go
180 commits
# 5,286
Go
C
Qt
messeng...
171 commits
# 5,778
Shell
TeX
Go
Ethereu...
159 commits
# 4,285
Elixir
Shell
Blockch...
Go
146 commits
# 5,759
Go
Shell
Ethereu...
C
142 commits
# 6,535
Crystal
Go
Ethereu...
webasse...
109 commits
# 8,527
Go
specifi...
Shell
Ethereu...
101 commits
# 223,335
chef-re...
Shell
C
C++
98 commits
# 252,042
Shell
C
C++
dapp
83 commits
# 10,351
Go
Shell
Ethereu...
C
81 commits
# 10,454
Ethereu...
Shell
Go
C
72 commits
# 124,754
bot-fra...
Erlang
Elixir
Shell
62 commits
# 13,151
Go
Shell
Ethereu...
C
62 commits

Celo Blockchain

Official golang implementation of the Celo blockchain, based off of the official golang implementation of the Ethereum protocol.

Discord

Prebuilt Docker images are available for immediate use: us.gcr.io/celo-testnet/celo-node. See docs.celo.org/getting-started for a guide to the Celo networks and how to get started.

Documentation for Celo more generally can be found at docs.celo.org

Most functionality of this client is similar to

go-ethereum
, also known as
geth
, from which it was forked. If you do not find your question answered by Celo-specific documentation, try searching the geth wiki.

Building the source

Building

geth
requires both a Go (version 1.16) and a C compiler. You can install them using your favourite package manager. Once the dependencies are installed, run
make geth

or, to build the full suite of utilities:

make all

Mobile Clients

There are two different commands in the

Makefile
to build the
ios
and the
android
clients.
make ios

and

make android

Note: The

android
command it applies a git patch (
patches/mobileLibsForBuild.patch
) required to swap some libs from the
go.mod
for the client to work, installs those libs, builds the client, and then reverts the patch.

Executables

The Celo blockchain client comes with several wrappers/executables found in the

cmd
directory.

| Command | Description | |:----------:|-------------| |

geth
| The main Celo Blockchain client. It is the entry point into the Celo network, capable of running as a full node (default), archive node (retaining all historical state), light node (retrieving data live), or lightest node (retrieving minimum number of block headers to verify existing validator set). It can be used by other processes as a gateway into the Celo network via JSON RPC endpoints exposed on top of HTTP, WebSocket and/or IPC transports.

geth --help
and the Ethereum CLI Wiki page for command line options. | |
abigen
| Source code generator to convert Celo contract definitions into easy to use, compile-time type-safe Go packages. It operates on plain Ethereum contract ABIs with expanded functionality if the contract bytecode is also available. However it also accepts Solidity source files, making development much more streamlined. Please see Ethereum's Native DApps wiki page for details. | |
bootnode
| Stripped down version of the Celo client implementation that only takes part in the network node discovery protocol, but does not run any of the higher level application protocols. It can be used as a lightweight bootstrap node to aid in finding peers in private networks. | |
evm
| Developer utility version of the EVM (Ethereum Virtual Machine) that is capable of running bytecode snippets within a configurable environment and execution mode. Its purpose is to allow isolated, fine-grained debugging of EVM opcodes (e.g.
evm --code 60ff60ff --debug run
). | |
gethrpctest
| Developer utility tool to support the ethereum/rpc-test test suite which validates baseline conformity to the Ethereum JSON RPC specs. Please see the ethereum test suite's readme for details. | |
rlpdump
| Developer utility tool to convert binary RLP (Recursive Length Prefix) dumps (data encoding used by the Celo protocol both network as well as consensus wise) to user friendlier hierarchical representation (e.g.
rlpdump --hex CE0183FFFFFFC4C304050583616263
). |

Running Celo

Please see the docs.celo.org/getting-started for instructions on how to run a node connected the Celo network using the prebuilt Docker image.

Going through all the possible command line flags is out of scope here, please consult

geth --help
for more complete information. We've enumerated a few common parameter combos to get you up to speed quickly on how you can run your own Celo blockchain client instance.

Full node on the main Celo network

By default, the Celo client will connect to the Mainnet. Running the following command will create a full node that will sync with the Celo network and allow access to all of its functionality.

$ geth console

This command will: * Start

geth
in full sync mode which will download and execute all historical block information. * Start up
geth
's built-in interactive JavaScript console, (via the trailing
console
subcommand) through which you can invoke all official
web3
methods
as well as
geth
's own management APIs. This tool is optional and if you leave it out you can always attach to an already running
geth
instance with
geth attach
.

A Full node on the Alfajores test network

Smart contract developers will be most interested in the Alfajores testnet. On Alfajores, you can receive testnet Celo Gold through the Alfajores faucet and deploy smart contracts in an environment very similar to Mainnet. More information about the Alfajores testnet can be found on docs.celo.org.

$ geth --alfajores console

Note: Although there are some internal protective measures to prevent transactions from crossing over between the main network and test network, you should make sure to always use separate accounts for testnet-tokens and real-tokens. Unless you manually move accounts,

geth
will by default correctly separate the two networks and will not make any accounts available between them.

Full node on the Baklava test network

Validators and full node operators will be most interested in the Baklava testnet. On Baklava, you can receive a distribution of testnet Celo Gold to become a validator on the network and test out running a validator for the first time, or try out new infrastructure. More information about the Baklava testnet can be found on docs.celo.org. A full guide to getting started as a validator on Baklava can be found in the Getting Started guides

$ geth --baklava console

Configuration

As an alternative to passing the numerous flags to the

Celo
binary, you can also pass a configuration file via:
$ geth --config /path/to/your_config.toml

To get an idea how the file should look like you can use the

dumpconfig
subcommand to export your existing configuration:
$ geth --your-favourite-flags dumpconfig

Programmatically interfacing
geth
nodes

As a developer, sooner rather than later you'll want to start interacting with

geth
and the Celo network via your own programs and not manually through the console. To aid this,
geth
has built-in support for a JSON-RPC based APIs (standard APIs and
geth
specific APIs
). These can be exposed via HTTP, WebSockets and IPC (UNIX sockets on UNIX based platforms, and named pipes on Windows).

The IPC interface is enabled by default and exposes all the APIs supported by

geth
, whereas the HTTP and WS interfaces need to manually be enabled and only expose a subset of APIs due to security reasons. These can be turned on/off and configured as you'd expect.

HTTP based JSON-RPC API options:

  • --rpc
    Enable the HTTP-RPC server
  • --rpcaddr
    HTTP-RPC server listening interface (default:
    localhost
    )
  • --rpcport
    HTTP-RPC server listening port (default:
    8545
    )
  • --rpcapi
    API's offered over the HTTP-RPC interface (default:
    eth,net,web3
    )
  • --rpccorsdomain
    Comma separated list of domains from which to accept cross origin requests (browser enforced)
  • --ws
    Enable the WS-RPC server
  • --wsaddr
    WS-RPC server listening interface (default:
    localhost
    )
  • --wsport
    WS-RPC server listening port (default:
    8546
    )
  • --wsapi
    API's offered over the WS-RPC interface (default:
    eth,net,web3
    )
  • --wsorigins
    Origins from which to accept websockets requests
  • --ipcdisable
    Disable the IPC-RPC server
  • --ipcapi
    API's offered over the IPC-RPC interface (default:
    admin,debug,eth,miner,net,personal,shh,txpool,web3
    )
  • --ipcpath
    Filename for IPC socket/pipe within the datadir (explicit paths escape it)

You'll need to use your own programming environments' capabilities (libraries, tools, etc) to connect via HTTP, WS or IPC to a

geth
node configured with the above flags and you'll need to speak JSON-RPC on all transports. You can reuse the same connection for multiple requests!

Note: Please understand the security implications of opening up an HTTP/WS based transport before doing so! Hackers on the internet are actively trying to subvert Celo nodes with exposed APIs! Further, all browser tabs can access locally running web servers, so malicious web pages could try to subvert locally available APIs!

Contribution

Thank you for considering to help out with the source code! We welcome contributions from anyone on the internet, and are grateful for even the smallest of fixes!

If you'd like to contribute to celo-blockchain, please fork, fix, commit and send a pull request for the maintainers to review and merge into the main code base. If you wish to submit more complex changes though, please check up with the core devs first on the official Celo forum to ensure those changes are in line with the general philosophy of the project and/or get some early feedback which can make both your efforts much lighter as well as our review and merge procedures quick and simple.

Please make sure your contributions adhere to our coding guidelines:

  • Code must adhere to the official Go formatting guidelines (i.e. uses gofmt).
  • Code must be documented adhering to the official Go commentary guidelines.
  • Pull requests need to be based on and opened against the
    master
    branch.
  • Commit messages should be prefixed with the package(s) they modify.
    • E.g. "eth, rpc: make trace configs optional"

Submitting an issue

If you come across a bug, pleas open a GitHub issue with information about your build and what happened.

CI Testing and automerge

We run a circle CI test suite on each PR. The following tests are required to merge a PR. * Unit tests:

make test
or
./build/env.sh go run build/ci.go test
* Lint:
make lint
(Fix go format errors with
gofmt -s
) * Build:
make
* End to end sync and transfer tests * Check imports:
./scripts/check_imports.sh

celo-blockchain
is based on
go-ethereum
, but the import path has been renamed from
github.com/ethereum/go-ethereum
to
github.com/celo-org/celo-blockchain
. Developers are encouraged to run
./scripts/setup_git_hooks.sh
to enable checking that import path has been changed to
celo-org
on
git merge
and
git commit
. Imports can automatically be renamed with
./scripts/rename_imports.sh
.

Individual package tests can be run with

./build/env.sh go test github.com/celo-org/celo-blockchain/$(PATH_TO_GO_PACKAGE)
if you don't have
GOPATH
set-up.

Once a PR is approved, adding on the

automerge
label will keep it up to date and do a squash merge once all the required tests have passed.

Benchmarking

Golang has built in support for running benchmarks with go tool

go test -run=ThisIsNotATestName -bench=. ./$PACKAGE_NAME
will run all benchmarks in a package.

One note around running benchmarks is that

BenchmarkHandlePreprepare
is quite takes a while to run, particularly when testing with a larger number of validators. Substituting
-bench=REGEX
for
-bench=.
will specify which tests to run. Adding
-cpuprofile=cpu.out
which can be visualized with
go tool pprof -html:8080 cpu.out
if
graphviz
is installed.

See the go testing flags and go docs for more information on benchmarking.

License

The celo-blockchain library (i.e. all code outside of the

cmd
directory) is licensed under the GNU Lesser General Public License v3.0, also included in our repository in the
COPYING.LESSER
file.

The celo-blockchain binaries (i.e. all code inside of the

cmd
directory) is licensed under the GNU General Public License v3.0, also included in our repository in the
COPYING
file.

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.