Need help with imitation-learning?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

300 Stars 107 Forks MIT License 41 Commits 61 Opened issues


Repository to store conditional imitation learning based AI that runs on CARLA.

Services available


Need anything else?

Contributors list

Conditional Imitation Learning at CARLA

Repository to store the conditional imitation learning based AI that runs on carla. The trained model is the one used on "CARLA: An Open Urban Driving Simulator" paper.


tensorflow_gpu 1.1 or more



carla 0.8.2



Basically run:

$ python

Note that you must have a carla server running .
To check the other options run

$ python --help


The dataset can be downloaded here 24 GB

The data is stored on HDF5 files. Each HDF5 file contains 200 data points. The HDF5 contains two "datasets": 'images_center':
The RGB images stored at 200x88 resolution

All the controls and measurements collected. They are stored on the "dataset" vector.

  1. Steer, float
  2. Gas, float
  3. Brake, float
  4. Hand Brake, boolean
  5. Reverse Gear, boolean
  6. Steer Noise, float
  7. Gas Noise, float
  8. Brake Noise, float
  9. Position X, float
  10. Position Y, float
  11. Speed, float
  12. Collision Other, float
  13. Collision Pedestrian, float
  14. Collision Car, float
  15. Opposite Lane Inter, float
  16. Sidewalk Intersect, float
  17. Acceleration X,float
  18. Acceleration Y, float
  19. Acceleration Z, float
  20. Platform time, float
  21. Game Time, float
  22. Orientation X, float
  23. Orientation Y, float
  24. Orientation Z, float
  25. High level command, int ( 2 Follow lane, 3 Left, 4 Right, 5 Straight)
  26. Noise, Boolean ( If the noise, perturbation, is activated, (Not Used) )
  27. Camera (Which camera was used)
  28. Angle (The yaw angle for this camera)


If you use the conditional imitation learning, please cite our ICRA 2018 paper.

End-to-end Driving via Conditional Imitation Learning.
Codevilla, Felipe and Müller, Matthias and López, Antonio and Koltun, Vladlen and Dosovitskiy, Alexey. ICRA 2018 [PDF]

  title={End-to-end Driving via Conditional Imitation Learning},
  author={Codevilla, Felipe and M{\"u}ller, Matthias and L{\'o}pez,
Antonio and Koltun, Vladlen and Dosovitskiy, Alexey},
  booktitle={International Conference on Robotics and Automation (ICRA)},

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.