Need help with dostoevsky?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

184 Stars 19 Forks MIT License 221 Commits 8 Opened issues


Sentiment analysis library for russian language

Services available


Need anything else?

Contributors list

Dostoevsky Test & Lint

Sentiment analysis library for russian language


Please note that

supports only Python 3.6+ on both Linux and Windows
$ pip install dostoevsky

Social network model [FastText]

This model was trained on RuSentiment dataset and achieves up to ~0.71 F1 score.


First of all, you'll need to download binary model:

$ python -m dostoevsky download fasttext-social-network-model

Then you can use sentiment analyzer:

from dostoevsky.tokenization import RegexTokenizer
from dostoevsky.models import FastTextSocialNetworkModel

tokenizer = RegexTokenizer() tokens = tokenizer.split('всё очень плохо') # [('всё', None), ('очень', None), ('плохо', None)]

model = FastTextSocialNetworkModel(tokenizer=tokenizer)

messages = [ 'привет', 'я люблю тебя!!', 'малолетние дебилы' ]

results = model.predict(messages, k=2)

for message, sentiment in zip(messages, results): # привет -> {'speech': 1.0000100135803223, 'skip': 0.0020607432816177607} # люблю тебя!! -> {'positive': 0.9886782765388489, 'skip': 0.005394937004894018} # малолетние дебилы -> {'negative': 0.9525841474533081, 'neutral': 0.13661839067935944}] print(message, '->', sentiment)

If you use the library in a research project, please include the following citation for the RuSentiment data: ``` @inproceedings{rogers-etal-2018-rusentiment, title = "{R}u{S}entiment: An Enriched Sentiment Analysis Dataset for Social Media in {R}ussian", author = "Rogers, Anna and Romanov, Alexey and Rumshisky, Anna and Volkova, Svitlana and Gronas, Mikhail and Gribov, Alex", booktitle = "Proceedings of the 27th International Conference on Computational Linguistics", month = aug, year = "2018", address = "Santa Fe, New Mexico, USA", publisher = "Association for Computational Linguistics", url = "", pages = "755--763", }

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.