Need help with FlameGraph?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

11.9K Stars 1.4K Forks 345 Commits 119 Opened issues


Stack trace visualizer

Services available


Need anything else?

Contributors list

Flame Graphs visualize profiled code

Main Website:

Example (click to zoom):


Click a box to zoom the Flame Graph to this stack frame only. To search and highlight all stack frames matching a regular expression, click the search button in the upper right corner or press Ctrl-F. By default, search is case sensitive, but this can be toggled by pressing Ctrl-I or by clicking the ic button in the upper right corner.

Other sites: - The Flame Graph article in ACMQ and CACM: - CPU profiling using Linux perf_events, DTrace, SystemTap, or ktap: - CPU profiling using XCode Instruments:
- CPU profiling using Xperf.exe:
- Memory profiling:
- Other examples, updates, and news:

Flame graphs can be created in three steps:

  1. Capture stacks
  2. Fold stacks

1. Capture stacks

Stack samples can be captured using Linux perf_events, FreeBSD pmcstat (hwpmc), DTrace, SystemTap, and many other profilers. See the stackcollapse-* converters.

Linux perf_events

Using Linux perf_events (aka "perf") to capture 60 seconds of 99 Hertz stack samples, both user- and kernel-level stacks, all processes:

# perf record -F 99 -a -g -- sleep 60
# perf script > out.perf

Now only capturing PID 181:

# perf record -F 99 -p 181 -g -- sleep 60
# perf script > out.perf


Using DTrace to capture 60 seconds of kernel stacks at 997 Hertz:

# dtrace -x stackframes=100 -n 'profile-997 /arg0/ { @[stack()] = count(); } tick-60s { exit(0); }' -o out.kern_stacks

Using DTrace to capture 60 seconds of user-level stacks for PID 12345 at 97 Hertz:

# dtrace -x ustackframes=100 -n 'profile-97 /pid == 12345 && arg1/ { @[ustack()] = count(); } tick-60s { exit(0); }' -o out.user_stacks

60 seconds of user-level stacks, including time spent in-kernel, for PID 12345 at 97 Hertz:

# dtrace -x ustackframes=100 -n 'profile-97 /pid == 12345/ { @[ustack()] = count(); } tick-60s { exit(0); }' -o out.user_stacks


if the application has a ustack helper to include translated frames (eg, node.js frames; see: The rate for user-level stack collection is deliberately slower than kernel, which is especially important when using
as it performs additional work to translate frames.

2. Fold stacks

Use the stackcollapse programs to fold stack samples into single lines. The programs provided are:

    : for DTrace stacks
    : for Linux perf_events "perf script" output
    : for FreeBSD pmcstat -G stacks
    : for SystemTap stacks
    : for XCode Instruments
    : for Intel VTune profiles
  • stackcollapse-ljp.awk
    : for Lightweight Java Profiler
    : for Java jstack(1) output
    : for gdb(1) stacks
    : for Golang pprof stacks
    : for Microsoft Visual Studio profiles
    : for wallClockProfiler output

Usage example:

For perf_events:
$ ./ out.perf > out.folded

For DTrace: $ ./ out.kern_stacks > out.kern_folded

The output looks like this:

unix`_sys_sysenter_post_swapgs 1401
unix`_sys_sysenter_post_swapgs;genunix`close 5
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf 85
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf;c2audit`audit_closef 26
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf;c2audit`audit_setf 5
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf;genunix`audit_getstate 6
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf;genunix`audit_unfalloc 2
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf;genunix`closef 48


Use to render a SVG.

$ ./ out.kern_folded > kernel.svg

An advantage of having the folded input file (and why this is separate to is that you can use grep for functions of interest. Eg:

$ grep cpuid out.kern_folded | ./ > cpuid.svg

Provided Examples

Linux perf_events

An example output from Linux "perf script" is included, gzip'd, as example-perf-stacks.txt.gz. The resulting flame graph is example-perf.svg:


You can create this using:

$ gunzip -c example-perf-stacks.txt.gz | ./ --all | ./ --color=java --hash > example-perf.svg

This shows my typical workflow: I'll gzip profiles on the target, then copy them to my laptop for analysis. Since I have hundreds of profiles, I leave them gzip'd!

Since this profile included Java, I used the --color=java palette. I've also used --all, which includes all annotations that help use separate colors for kernel and user level code. The resulting flame graph uses: green == Java, yellow == C++, red == user-mode native, orange == kernel.

This profile was from an analysis of vert.x performance. The benchmark client, wrk, is also visible in the flame graph.


An example output from DTrace is also included, example-dtrace-stacks.txt, and the resulting flame graph, example-dtrace.svg:


You can generate this using:

$ ./ example-stacks.txt | ./ > example.svg

This was from a particular performance investigation: the Flame Graph identified that CPU time was spent in the lofs module, and quantified that time.


See the USAGE message (--help) for options:

USAGE: ./ [options] infile > outfile.svg

--title TEXT     # change title text
--subtitle TEXT  # second level title (optional)
--width NUM      # width of image (default 1200)
--height NUM     # height of each frame (default 16)
--minwidth NUM   # omit smaller functions (default 0.1 pixels)
--fonttype FONT  # font type (default "Verdana")
--fontsize NUM   # font size (default 12)
--countname TEXT # count type label (default "samples")
--nametype TEXT  # name type label (default "Function:")
--colors PALETTE # set color palette. choices are: hot (default), mem,
                 # io, wakeup, chain, java, js, perl, red, green, blue,
                 # aqua, yellow, purple, orange
--bgcolors COLOR # set background colors. gradient choices are yellow
                 # (default), blue, green, grey; flat colors use "#rrggbb"
--hash           # colors are keyed by function name hash
--cp             # use consistent palette (
--reverse        # generate stack-reversed flame graph
--inverted       # icicle graph
--flamechart     # produce a flame chart (sort by time, do not merge stacks)
--negate         # switch differential hues (bluered)
--notes TEXT     # add notes comment in SVG (for debugging)
--help           # this message

eg, ./ --title="Flame Graph: malloc()" trace.txt > graph.svg

As suggested in the example, flame graphs can process traces of any event, such as malloc()s, provided stack traces are gathered.

Consistent Palette

If you use the

option, it will use the $colors selection and randomly generate the palette like normal. Any future flamegraphs created using the
option will use the same palette map. Any new symbols from future flamegraphs will have their colors randomly generated using the $colors selection.

If you don't like the palette, just delete the file.

This allows your to change your colorscheme between flamegraphs to make the differences REALLY stand out.


Say we have 2 captures, one with a problem, and one when it was working (whatever "it" is):

cat working.folded | ./ --cp > working.svg
# this generates a, as per the normal random generated look.

cat broken.folded | ./ --cp --colors mem > broken.svg

this svg will use the same for the same events, but a very

different colorscheme for any new events.

Take a look at the demo directory for an example:


We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.