Need help with graph-notebook?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

303 Stars 61 Forks Other 126 Commits 28 Opened issues


Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Services available


Need anything else?

Contributors list

Graph Notebook: easily query and visualize graphs

The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Using this open-source Python package, you can connect to any graph database that supports the Apache TinkerPop, openCypher or the RDF SPARQL graph models. These databases could be running locally on your desktop or in the cloud. Graph databases can be used to explore a variety of use cases including knowledge graphs and identity graphs.

A colorful graph picture

Visualizing Gremlin queries:

Gremlin query and graph

Visualizing openCypher queries

openCypher query and graph

Visualizing SPARQL queries:

SPARL query and graph

Instructions for connecting to the following graph databases:

| Endpoint | Graph model | Query language | | :-----------------------------: | :---------------------: | :-----------------: | |Gremlin Server| property graph | Gremlin | | Blazegraph | RDF | SPARQL | |Amazon Neptune| property graph or RDF | Gremlin or SPARQL |

We encourage others to contribute configurations they find useful. There is an

folder where more information can be found.


Notebook cell 'magic' extensions in the IPython 3 kernel

- Executes a SPARQL query against your configured database endpoint.

- Executes a Gremlin query against your database using web sockets. The results are similar to those a Gremlin console would return.

Executes an openCypher query against your database.

- Sets the executing notebook's database configuration to the JSON payload provided in the cell body.

- Sets the executing notebook's vis.js options to the JSON payload provided in the cell body.

- Set of commands to integrate with NeptuneML functionality. Documentation

TIP :point_right: There is syntax highlighting for

cells to help you structure your queries more easily.

Notebook line 'magic' extensions in the IPython 3 kernel

- Obtain the status of Gremlin queries. Documentation

- Obtain the status of SPARQL queries. Documentation

- Obtain the status of openCypher queries.

- Generate a form to submit a bulk loader job. Documentation

- Get ids of bulk load jobs. Documentation

- Get the status of a provided
. Documentation

- Set of commands to integrate with NeptuneML functionality. You can find a set of tutorial notebooks here. Documentation

- Check the Health Status of the configured host endpoint. Documentation

- Provides a form to add data to your graph without the use of a bulk loader. Supports both RDF and Property Graph data models.

- Interactively explore the Neptune CDC stream (if enabled)

- Returns a JSON payload that contains connection information for your host.

- Set the host endpoint to send queries to.

- Print the version of the

- Print the Vis.js options being used for rendered graphs

TIP :point_right: You can list all the magics installed in the Python 3 kernel using the


TIP :point_right: Many of the magic commands support a

option in order to provide additional information.

Example notebooks

This project includes many example Jupyter notebooks. It is recommended to explore them. All of the commands and features supported by

are explained in detail with examples within the sample notebooks. You can find them here. As this project has evolved, many new features have been added. If you are already familiar with graph-notebook but want a quick summary of new features added, a good place to start is the Air-Routes notebooks in the 02-Visualization folder.

Keeping track of new features

It is recommended to check the file periodically to keep up to date as new features are added.


You will need:

  • Python 3.6.1-3.6.12
  • Jupyter Notebook 5.7.13
  • Tornado 4.5.3
  • RDFLib 5.0.0
  • A graph database that provides one or more of:
    • A SPARQL 1.1 endpoint
    • An Apache TinkerPop Gremlin Server compatible endpoint
    • An endpoint compatible with openCypher


# pin specific versions of required dependencies
pip install tornado==4.5.3
pip install ipykernel==5.3.4
pip install "ipython>=7.16.1,<=7.19.0"
pip install notebook==5.7.13
pip install rdflib==5.0.0

install the package

pip install graph-notebook

install and enable the visualization widget

jupyter nbextension install --py --sys-prefix graph_notebook.widgets jupyter nbextension enable --py --sys-prefix graph_notebook.widgets

copy static html resources

python -m graph_notebook.static_resources.install python -m graph_notebook.nbextensions.install

copy premade starter notebooks

python -m graph_notebook.notebooks.install --destination ~/notebook/destination/dir

start jupyter

jupyter notebook ~/notebook/destination/dir

Connecting to a graph database

Gremlin Server

In a new cell in the Jupyter notebook, change the configuration using

and modify the fields for
, and
. For a local Gremlin server (HTTP or WebSockets), you can use the following command:
  "host": "localhost",
  "port": 8182,
  "ssl": false

To setup a new local Gremlin Server for use with the graph notebook, check out

additional-databases/gremlin server


Change the configuration using

and modify the fields for
, and
. For a local Blazegraph database, you can use the following command:
  "host": "localhost",
  "port": 9999,
  "ssl": false

You can also make use of namespaces for Blazegraph by specifying the path

should use when querying your SPARQL like below:

{ "host": "localhost", "port": 9999, "ssl": false, "sparql": { "path": "blazegraph/namespace/foo/sparql" } }

This will result in the url

being used when executing any
magic commands.

To setup a new local Blazegraph database for use with the graph notebook, check out the Quick Start from Blazegraph.

Amazon Neptune

Change the configuration using

and modify the defaults as they apply to your Neptune cluster:
  "host": "your-neptune-endpoint",
  "port": 8182,
  "auth_mode": "DEFAULT",
  "load_from_s3_arn": "",
  "ssl": true,
  "aws_region": "your-neptune-region"

To setup a new Amazon Neptune cluster, check out the Amazon Web Services documentation.

When connecting the graph notebook to Neptune, make sure you have a network setup to communicate to the VPC that Neptune runs on. If not, you can follow this guide.

Authentication (Amazon Neptune)

If you are running a SigV4 authenticated endpoint, ensure that your configuration has

set to
  "host": "your-neptune-endpoint",
  "port": 8182,
  "auth_mode": "IAM",
  "load_from_s3_arn": "",
  "ssl": true,
  "aws_region": "your-neptune-region"

Additionally, you should have the following Amazon Web Services credentials available in a location accessible to Boto3:

  • Access Key ID
  • Secret Access Key
  • Default Region
  • Session Token (OPTIONAL. Use if you are using temporary credentials)

These variables must follow a specific naming convention, as listed in the Boto3 documentation

A list of all locations checked for Amazon Web Services credentials can also be found here.

Contributing Guidelines

See CONTRIBUTING for more information.


This project is licensed under the Apache-2.0 License.

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.