retdec

by avast

avast /retdec

RetDec is a retargetable machine-code decompiler based on LLVM.

5.6K Stars 663 Forks Last release: 6 months ago (v4.0) Other 1.8K Commits 5 Releases

Available items

No Items, yet!

The developer of this repository has not created any items for sale yet. Need a bug fixed? Help with integration? A different license? Create a request here:

RetDec

Travis CI build status TeamCity build status

RetDec is a retargetable machine-code decompiler based on LLVM.

The decompiler is not limited to any particular target architecture, operating system, or executable file format: * Supported file formats: ELF, PE, Mach-O, COFF, AR (archive), Intel HEX, and raw machine code * Supported architectures: * 32-bit: Intel x86, ARM, MIPS, PIC32, and PowerPC * 64-bit: x86-64, ARM64 (AArch64)

Features: * Static analysis of executable files with detailed information. * Compiler and packer detection. * Loading and instruction decoding. * Signature-based removal of statically linked library code. * Extraction and utilization of debugging information (DWARF, PDB). * Reconstruction of instruction idioms. * Detection and reconstruction of C++ class hierarchies (RTTI, vtables). * Demangling of symbols from C++ binaries (GCC, MSVC, Borland). * Reconstruction of functions, types, and high-level constructs. * Integrated disassembler. * Output in two high-level languages: C and a Python-like language. * Generation of call graphs, control-flow graphs, and various statistics.

For more information, check out our * Wiki (in progress) * Botconf 2017 talk: slides, video * REcon Montreal 2018 talk: slides * Publications

Installation and Use

Currently, we support Windows (7 or later), Linux, macOS, and (experimentally) FreeBSD. An installed version of RetDec requires approximately 5 to 6 GB of free disk space.

Windows

  1. Either download and unpack a pre-built package, or build and install the decompiler by yourself (the process is described below).

  2. Install Microsoft Visual C++ Redistributable for Visual Studio 2017.

  3. Install the following programs:

* [UPX](https://upx.github.io/) (Optional: if you want to use UPX unpacker in the preprocessing stage)
* [Graphviz](https://graphviz.gitlab.io/_pages/Download/windows/graphviz-2.38.msi) (Optional: if you want to generate call or control flow graphs)
  1. Now, you are all set to run the decompiler. To decompile a binary file named

    test.exe
    , run
    $RETDEC_INSTALL_DIR/bin/retdec-decompiler test.exe
    

For more information, run

retdec-decompiler
with
--help
.

Linux

  1. Either download and unpack a pre-built package, or build and install the decompiler by yourself (the process is described below).

  2. After you have built the decompiler, you will need to install the following packages via your distribution's package manager:

* [UPX](https://upx.github.io/) (Optional: if you want to use UPX unpacker in the preprocessing stage)
* [Graphviz](http://www.graphviz.org/) (Optional: if you want to generate call or control flow graphs)
  1. Now, you are all set to run the decompiler. To decompile a binary file named

    test.exe
    , run
    $RETDEC_INSTALL_DIR/bin/retdec-decompiler test.exe
    

For more information, run

retdec-decompiler
with
--help
.

macOS

  1. Either download and unpack a pre-built package, or build and install the decompiler by yourself (the process is described below).

  2. After you have built the decompiler, you will need to install the following packages:

* [UPX](https://upx.github.io/) (Optional: if you want to use UPX unpacker in the preprocessing stage)
* [Graphviz](http://www.graphviz.org/) (Optional: if you want to generate call or control flow graphs)
  1. Now, you are all set to run the decompiler. To decompile a binary file named

    test.exe
    , run
    $RETDEC_INSTALL_DIR/bin/retdec-decompiler test.exe
    

For more information, run

retdec-decompiler
with
--help
.

FreeBSD (Experimental)

  1. There are currently no pre-built "ports" packages for FreeBSD. You will have to build and install the decompiler by yourself. The process is described below.

  2. Now, you are all set to run the decompiler. To decompile a binary file named

    test.exe
    , run
    $RETDEC_INSTALL_DIR/bin/retdec-decompiler test.exe
    

For more information, run

retdec-decompiler
with
--help
.

Use of RetDec libraries

As of RetDec version 4.0 you can easily use various RetDec libraries in your projects - if they are build with CMake. RetDec installation contains all the necessary headers, libraries, and CMake scripts.

If you installed RetDec into a standard installation location of your system (e.g.

/usr
,
/usr/local
), all you need to do in order to use its components is:
find_package(retdec 4.0 REQUIRED
   COMPONENTS
      
      [...]
)
target_link_libraries(your-project
   PUBLIC
      retdec::
      [...]
)

If you did not install RetDec somewhere where it can be automatically discovered, you need to help CMake find it before

find_package()
is used. There are generally two ways to do it (pick & use only one):
  1. Add the RetDec installation directory to

    CMAKE_PREFIX_PATH
    :

    cmake
    list(APPEND CMAKE_PREFIX_PATH ${RETDEC_INSTALL_DIR})
    
  2. Set the path to installed RetDec CMake scripts to

    retdec_DIR
    :
    cmake
    set(retdec_DIR ${RETDEC_INSTALL_DIR}/share/retdec/cmake)
    

See the Repository Overview wiki page for the list of available RetDec components, or the retdec-build-system-tests for demos on how to use them.

Build and Installation

This section describes a local build and installation of RetDec. Instructions for Docker are given in the next section.

Requirements

Linux

On Debian-based distributions (e.g. Ubuntu), the required packages can be installed with

apt-get
:
sudo apt-get install build-essential cmake git openssl libssl-dev python3 autoconf automake libtool pkg-config m4 zlib1g-dev upx doxygen graphviz

On RPM-based distributions (e.g. Fedora), the required packages can be installed with

dnf
:
sudo dnf install gcc gcc-c++ cmake make git openssl openssl-devel python3 autoconf automake libtool pkg-config m4 zlib-devel upx doxygen graphviz

On Arch Linux, the required packages can be installed with

pacman
:
sudo pacman --needed -S base-devel cmake git openssl python3 autoconf automake libtool pkg-config m4 zlib upx doxygen graphviz

Windows

  • Microsoft Visual C++ (version >= Visual Studio 2017 version 15.7)
  • CMake (version >= 3.6)
  • Git
  • OpenSSL (version >= 1.0.1)
  • Python (version >= 3.4)
  • Optional: Doxygen and Graphviz for generating API documentation

macOS

Packages should be preferably installed via Homebrew.

FreeBSD (Experimental)

Packages should be installed via FreeBSDs pre-compiled package repository using the

pkg
command or built from scratch using the
ports
database method.
  • Full "pkg" tool instructions: handbook pkg method
    • pkg install cmake python37 git autotools
      OR
  • Full "ports" instructions: handbook ports method
    • portsnap fetch
    • portsnap extract
  • For example,
    cmake
    would be
    • whereis cmake
    • cd /usr/ports/devel/cmake
    • make install clean

Process

Note: Although RetDec now supports a system-wide installation (#94), unless you use your distribution's package manager to install it, we recommend installing RetDec locally into a designated directory. The reason for this is that uninstallation will be easier as you will only need to remove a single directory. To perform a local installation, run

cmake
with the
-DCMAKE_INSTALL_PREFIX=
parameter, where
 is directory into which RetDec will be installed (e.g. 
$HOME/projects/retdec-install
on Linux and macOS, and
C:\projects\retdec-install
on Windows).
  • Clone the repository:
    • git clone https://github.com/avast/retdec
  • Linux:
    • cd retdec
    • mkdir build && cd build
    • cmake .. -DCMAKE_INSTALL_PREFIX=
    • make -jN
      (
      N
      is the number of processes to use for parallel build, typically number of cores + 1 gives fastest compilation time)
    • make install
  • Windows:
    • Open a command prompt (e.g.
      cmd.exe
      )
    • cd retdec
    • mkdir build && cd build
    • cmake .. -DCMAKE_INSTALL_PREFIX= -G
    • cmake --build . --config Release -- -m
    • cmake --build . --config Release --target install
    • Alternatively, you can open
      retdec.sln
      generated by
      cmake
      in Visual Studio IDE
  • macOS:
    • cd retdec
    • mkdir build && cd build
    • cmake .. -DCMAKE_INSTALL_PREFIX=
    • make -jN
      (
      N
      is the number of processes to use for parallel build, typically number of cores + 1 gives fastest compilation time)
    • make install
  • FreeBSD:
    • sudo pkg install git cmake
    • git clone https://github.com/avast/retdec
    • cd retdec
    • mkdir build && cd build
    • sh
      # FreeBSD (and other BSDs) do need cmake, python3, git, autotools. OpenSSL is pre-installed in the OS but check its version.
      # Later versions may be available for each of the packages.
      # See what is installed:
      sudo pkg info cmake python37 autotools
      # Install/upgrade them:
      sudo pkg install cmake python37 autotools
      
      *
      cmake .. -DCMAKE_INSTALL_PREFIX=
      *
      make -jN
      (
      N
      is the number of processes to use for parallel build, typically number of cores + 1 gives fastest compilation time) *
      make install

You have to pass the following parameters to

cmake
: *
-DCMAKE_INSTALL_PREFIX=
to set the installation path to
. Quote the path if you are using backslashes on Windows (e.g. 
-DCMAKE_INSTALL_PREFIX="C:\retdec"
). * (Windows only)
-G
is
-G"Visual Studio 15 2017"
for 32-bit build using Visual Studio 2017, or
-G"Visual Studio 15 2017 Win64"
for 64-bit build using Visual Studio 2017. Later versions of Visual Studio may be used.

You can pass the following additional parameters to

cmake
: *
-DRETDEC_DOC=ON
to build with API documentation (requires Doxygen and Graphviz, disabled by default). *
-DRETDEC_TESTS=ON
to build with tests (disabled by default). *
-DRETDEC_DEV_TOOLS=ON
to build with development tools (disabled by default). *
-DRETDEC_COMPILE_YARA=OFF
to disable YARA rules compilation at installation step (enabled by default). *
-DCMAKE_BUILD_TYPE=Debug
to build with debugging information, which is useful during development. By default, the project is built in the
Release
mode. This has no effect on Windows, but the same thing can be achieved by running
cmake --build .
with the
--config Debug
parameter. *
-D_LOCAL_DIR=
where
 is from 
{CAPSTONE, GOOGLETEST, KEYSTONE, LLVM, YARA, YARAMOD}
(e.g.
-DCAPSTONE_LOCAL_DIR=
), to use the local repository clone at
 for RetDec dependency instead of downloading a fresh copy at build time. Multiple such options may be used at the same time.
* 
-DRETDEC_ENABLE_=ON
to build only the specified component(s) (multiple such options can be used at once), and its (theirs) dependencies. By default, all the components are built. If at least one component is enabled via this mechanism, all the other components that were not explicitly enabled (and are not needed as dependencies of enabled components) are not built. See cmake/options.cmake for all the available component options. *
-DRETDEC_ENABLE_ALL=ON
can be used to (re-)enable all the components. * Alternatively,
-DRETDEC_ENABLE=
can be used instead of
-DRETDEC_ENABLE_=ON
(e.g.
-DRETDEC_ENABLE=fileformat,loader,ctypesparser
is equivalent to
-DRETDEC_ENABLE_FILEFORMAT=ON -DRETDEC_ENABLE_LOADER=ON -DRETDEC_ENABLE_CTYPESPARSER=ON
).

Build in Docker

Docker support is maintained by community. If something does not work for you or if you have suggestions for improvements, open an issue or PR.

Build Image

Building in Docker does not require installation of the required libraries locally. This is a good option for trying out RetDec without setting up the whole build toolchain.

To build the RetDec Docker image, run

docker build -t retdec - < Dockerfile

This builds the image from the master branch of this repository.

To build the image using the local copy of the repository, use the development Dockerfile,

Dockerfile.dev
:
docker build -t retdec:dev . -f Dockerfile.dev

Run Container

If your

uid
is not 1000, make sure that the directory containing your input binary files is accessible for RetDec:
chmod 0777 /path/to/local/directory
Now, you can run the decompiler inside a container:
docker run --rm -v /path/to/local/directory:/destination retdec retdec-decompiler /destination/binary
Note: Do not modify the
/destination
part is. You only need to change
/path/to/local/directory
. Output files will then be generated to
/path/to/local/directory
.

Automated TeamCity Builds

Our TeamCity servers are continuously generating up-to-date RetDec packages from the latest commit in the

master
branch. These are mostly meant to be used by RetDec developers, contributors, and other people experimenting with the product (e.g. testing if an issue present in the official release still exists in the current
master
).

You can use these as you wish, but keep in mind that there are no guarantees they will work on your system (especially the Linux version), and that regressions are a possibility. To get a stable RetDec version, either download the latest official pre-built package or build the latest RetDec version tag.

Project Documentation

See the project documentation for an up to date Doxygen-generated software reference corresponding to the latest commit in the

master
branch.

Related Repositories

  • retdec-idaplugin -- Embeds RetDec into IDA (Interactive Disassembler) and makes its use much easier.
  • retdec-r2plugin -- Embeds RetDec into Radare2 and makes its use much easier.
  • retdec-regression-tests-framework -- A framework for writing and running regression tests for RetDec and related tools. This is a must if you plan to contribute to the RetDec project.
  • retdec-regression-tests -- A suite of regression tests for RetDec and related tools.
  • retdec-build-system-tests -- A suite of tests for RetDec's build system. This can also serve as a collection of demos on how to use RetDec libraries.
  • vim-syntax-retdecdsm -- Vim syntax-highlighting file for the output from the RetDec's disassembler (
    .dsm
    files).

License

Copyright (c) 2017 Avast Software, licensed under the MIT license. See the

LICENSE
file for more details.

RetDec incorporates a modified PeLib library. New modules added by Avast Software are licensed under the MIT license. The original sources are licensed under the following license: * Copyright (c) 2004 - 2005 Sebastian Porst ([email protected]), licensed under the zlib/libpng License. See the

LICENSE-PELIB
file for more details.

RetDec uses third-party libraries or other resources listed, along with their licenses, in the

LICENSE-THIRD-PARTY
file.

Contributing

See RetDec contribution guidelines.

Acknowledgements

This software was supported by the research funding TACR (Technology Agency of the Czech Republic), ALFA Programme No. TA01010667.

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.