Need help with torchinfo?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

TylerYep
574 Stars 39 Forks MIT License 215 Commits 6 Opened issues

Description

View model summaries in PyTorch!

Services available

!
?

Need anything else?

Contributors list

# 137,840
Python
pytorch
Keras
torch
180 commits
# 240,416
Scala
Clojure
Flask
amqp0-9...
2 commits
# 102,620
whatsap...
jira
python-...
focal-l...
1 commit
# 152,649
wikidat...
Lua
PHP
pandas
1 commit
# 411,675
Python
C++
pytorch
Keras
1 commit
# 173,842
C++
C
pytorch
correla...
1 commit
# 20,812
Python
Shell
mtcnn
facenet
1 commit

torchinfo

Python 3.6+ PyPI version Conda version Build Status pre-commit.ci status GitHub license codecov Downloads

(formerly torch-summary)

Torchinfo provides information complementary to what is provided by

print(your_model)
in PyTorch, similar to Tensorflow's
model.summary()
API to view the visualization of the model, which is helpful while debugging your network. In this project, we implement a similar functionality in PyTorch and create a clean, simple interface to use in your projects.

This is a completely rewritten version of the original torchsummary and torchsummaryX projects by @sksq96 and @nmhkahn. This project addresses all of the issues and pull requests left on the original projects by introducing a completely new API.

Usage

pip install torchinfo

Alternatively, via conda:

conda install -c conda-forge torchinfo

How To Use

from torchinfo import summary

model = ConvNet() batch_size = 16 summary(model, input_size=(batch_size, 1, 28, 28))

================================================================================================================
Layer (type:depth-idx)          Input Shape          Output Shape         Param #            Mult-Adds
================================================================================================================
SingleInputNet                  --                   --                   --                  --
├─Conv2d: 1-1                   [7, 1, 28, 28]       [7, 10, 24, 24]      260                1,048,320
├─Conv2d: 1-2                   [7, 10, 12, 12]      [7, 20, 8, 8]        5,020              2,248,960
├─Dropout2d: 1-3                [7, 20, 8, 8]        [7, 20, 8, 8]        --                 --
├─Linear: 1-4                   [7, 320]             [7, 50]              16,050             112,350
├─Linear: 1-5                   [7, 50]              [7, 10]              510                3,570
================================================================================================================
Total params: 21,840
Trainable params: 21,840
Non-trainable params: 0
Total mult-adds (M): 3.41
================================================================================================================
Input size (MB): 0.02
Forward/backward pass size (MB): 0.40
Params size (MB): 0.09
Estimated Total Size (MB): 0.51
================================================================================================================

Note: if you are using a Jupyter Notebook or Google Colab,

summary(model, ...)
must be the returned value of the cell. If it is not, you should wrap the summary in a print(), e.g.
print(summary(model, ...))
. See
tests/jupyter_test.ipynb
for examples.

This version now supports:

  • RNNs, LSTMs, and other recursive layers
  • Sequentials & ModuleLists
  • Branching output used to explore model layers using specified depths
  • Returns ModelStatistics object containing all summary data fields
  • Configurable rows/columns
  • Jupyter Notebook / Google Colab

Other new features:

  • Verbose mode to show weights and bias layers
  • Accepts either input data or simply the input shape!
  • Customizable line widths and batch dimension
  • Comprehensive unit/output testing, linting, and code coverage testing

Documentation

def summary(
    model: nn.Module,
    input_size: Optional[INPUT_SIZE_TYPE] = None,
    input_data: Optional[INPUT_DATA_TYPE] = None,
    batch_dim: Optional[int] = None,
    cache_forward_pass: Optional[bool] = None,
    col_names: Optional[Iterable[str]] = None,
    col_width: int = 25,
    depth: int = 3,
    device: Optional[torch.device] = None,
    dtypes: Optional[List[torch.dtype]] = None,
    row_settings: Optional[Iterable[str]] = None,
    verbose: int = 1,
    **kwargs: Any,
) -> ModelStatistics:
"""
Summarize the given PyTorch model. Summarized information includes:
    1) Layer names,
    2) input/output shapes,
    3) kernel shape,
    4) # of parameters,
    5) # of operations (Mult-Adds)

NOTE: If neither input_data or input_size are provided, no forward pass through the network is performed, and the provided model information is limited to layer names.

Args: model (nn.Module): PyTorch model to summarize. The model should be fully in either train() or eval() mode. If layers are not all in the same mode, running summary may have side effects on batchnorm or dropout statistics. If you encounter an issue with this, please open a GitHub issue.

input_size (Sequence of Sizes):
        Shape of input data as a List/Tuple/torch.Size
        (dtypes must match model input, default is FloatTensors).
        You should include batch size in the tuple.
        Default: None

input_data (Sequence of Tensors):
        Arguments for the model's forward pass (dtypes inferred).
        If the forward() function takes several parameters, pass in a list of
        args or a dict of kwargs (if your forward() function takes in a dict
        as its only argument, wrap it in a list).
        Default: None

batch_dim (int):
        Batch_dimension of input data. If batch_dim is None, assume
        input_data / input_size contains the batch dimension, which is used
        in all calculations. Else, expand all tensors to contain the batch_dim.
        Specifying batch_dim can be an runtime optimization, since if batch_dim
        is specified, torchinfo uses a batch size of 1 for the forward pass.
        Default: None

cache_forward_pass (bool):
        If True, cache the run of the forward() function using the model
        class name as the key. If the forward pass is an expensive operation,
        this can make it easier to modify the formatting of your model
        summary, e.g. changing the depth or enabled column types, especially
        in Jupyter Notebooks.
        WARNING: Modifying the model architecture or input data/input size when
        this feature is enabled does not invalidate the cache or re-run the
        forward pass, and can cause incorrect summaries as a result.
        Default: False

col_names (Iterable[str]):
        Specify which columns to show in the output. Currently supported: (
            "input_size",
            "output_size",
            "num_params",
            "kernel_size",
            "mult_adds",
        )
        Default: ("output_size", "num_params")
        If input_data / input_size are not provided, only "num_params" is used.

col_width (int):
        Width of each column.
        Default: 25

depth (int):
        Depth of nested layers to display (e.g. Sequentials).
        Nested layers below this depth will not be displayed in the summary.
        Default: 3

device (torch.Device):
        Uses this torch device for model and input_data.
        If not specified, uses result of torch.cuda.is_available().
        Default: None

dtypes (List[torch.dtype]):
        If you use input_size, torchinfo assumes your input uses FloatTensors.
        If your model use a different data type, specify that dtype.
        For multiple inputs, specify the size of both inputs, and
        also specify the types of each parameter here.
        Default: None

row_settings (Iterable[str]):
        Specify which features to show in a row. Currently supported: (
            "depth",
            "var_names",
        )
        Default: ("depth",)

verbose (int):
        0 (quiet): No output
        1 (default): Print model summary
        2 (verbose): Show weight and bias layers in full detail
        Default: 1
        If using a Juypter Notebook or Google Colab, the default is 0.

**kwargs:
        Other arguments used in `model.forward` function. Passing *args is no
        longer supported.

Return: ModelStatistics object See torchinfo/model_statistics.py for more information. """

Examples

Get Model Summary as String

from torchinfo import summary

model_stats = summary(your_model, (1, 3, 28, 28), verbose=0) summary_str = str(model_stats)

summary_str contains the string representation of the summary!

Explore Different Configurations

class LSTMNet(nn.Module):
    """ Batch-first LSTM model. """
    def __init__(self, vocab_size=20, embed_dim=300, hidden_dim=512, num_layers=2):
        super().__init__()
        self.hidden_dim = hidden_dim
        self.embedding = nn.Embedding(vocab_size, embed_dim)
        self.encoder = nn.LSTM(embed_dim, hidden_dim, num_layers=num_layers, batch_first=True)
        self.decoder = nn.Linear(hidden_dim, vocab_size)

def forward(self, x):
    embed = self.embedding(x)
    out, hidden = self.encoder(embed)
    out = self.decoder(out)
    out = out.view(-1, out.size(2))
    return out, hidden

summary( LSTMNet(), (1, 100), dtypes=[torch.long], verbose=2, col_width=16, col_names=["kernel_size", "output_size", "num_params", "mult_adds"], row_settings=["var_names"], )

========================================================================================================================
Layer (type (var_name))                  Kernel Shape         Output Shape         Param #              Mult-Adds
========================================================================================================================
LSTMNet                                  --                   --                   --                   --
├─Embedding (embedding)                  [300, 20]            [1, 100, 300]        6,000                6,000
│    └─weight                            [300, 20]                                 └─6,000
├─LSTM (encoder)                         --                   [1, 100, 512]        3,768,320            376,832,000
│    └─weight_ih_l0                      [2048, 300]                               ├─614,400
│    └─weight_hh_l0                      [2048, 512]                               ├─1,048,576
│    └─bias_ih_l0                        [2048]                                    ├─2,048
│    └─bias_hh_l0                        [2048]                                    ├─2,048
│    └─weight_ih_l1                      [2048, 512]                               ├─1,048,576
│    └─weight_hh_l1                      [2048, 512]                               ├─1,048,576
│    └─bias_ih_l1                        [2048]                                    ├─2,048
│    └─bias_hh_l1                        [2048]                                    └─2,048
├─Linear (decoder)                       [512, 20]            [1, 100, 20]         10,260               10,260
│    └─weight                            [512, 20]                                 ├─10,240
│    └─bias                              [20]                                      └─20
========================================================================================================================
Total params: 3,784,580
Trainable params: 3,784,580
Non-trainable params: 0
Total mult-adds (M): 376.85
========================================================================================================================
Input size (MB): 0.00
Forward/backward pass size (MB): 0.67
Params size (MB): 15.14
Estimated Total Size (MB): 15.80
========================================================================================================================

ResNet

import torchvision

model = torchvision.models.resnet152() summary(model, (1, 3, 224, 224), depth=3)

==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
ResNet                                   --                        --
├─Conv2d: 1-1                            [1, 64, 112, 112]         9,408
├─BatchNorm2d: 1-2                       [1, 64, 112, 112]         128
├─ReLU: 1-3                              [1, 64, 112, 112]         --
├─MaxPool2d: 1-4                         [1, 64, 56, 56]           --
├─Sequential: 1-5                        [1, 256, 56, 56]          --
│    └─Bottleneck: 2-1                   [1, 256, 56, 56]          --
│    │    └─Conv2d: 3-1                  [1, 64, 56, 56]           4,096
│    │    └─BatchNorm2d: 3-2             [1, 64, 56, 56]           128
│    │    └─ReLU: 3-3                    [1, 64, 56, 56]           --
│    │    └─Conv2d: 3-4                  [1, 64, 56, 56]           36,864
│    │    └─BatchNorm2d: 3-5             [1, 64, 56, 56]           128
│    │    └─ReLU: 3-6                    [1, 64, 56, 56]           --
│    │    └─Conv2d: 3-7                  [1, 256, 56, 56]          16,384
│    │    └─BatchNorm2d: 3-8             [1, 256, 56, 56]          512
│    │    └─Sequential: 3-9              [1, 256, 56, 56]          16,896
│    │    └─ReLU: 3-10                   [1, 256, 56, 56]          --
│    └─Bottleneck: 2-2                   [1, 256, 56, 56]          --

... ... ...

├─AdaptiveAvgPool2d: 1-9 [1, 2048, 1, 1] -- ├─Linear: 1-10 [1, 1000] 2,049,000 ========================================================================================== Total params: 60,192,808 Trainable params: 60,192,808 Non-trainable params: 0 Total mult-adds (G): 11.51 ========================================================================================== Input size (MB): 0.60 Forward/backward pass size (MB): 360.87 Params size (MB): 240.77 Estimated Total Size (MB): 602.25 ==========================================================================================

Multiple Inputs w/ Different Data Types

class MultipleInputNetDifferentDtypes(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1a = nn.Linear(300, 50)
        self.fc1b = nn.Linear(50, 10)

    self.fc2a = nn.Linear(300, 50)
    self.fc2b = nn.Linear(50, 10)

def forward(self, x1, x2):
    x1 = F.relu(self.fc1a(x1))
    x1 = self.fc1b(x1)
    x2 = x2.type(torch.float)
    x2 = F.relu(self.fc2a(x2))
    x2 = self.fc2b(x2)
    x = torch.cat((x1, x2), 0)
    return F.log_softmax(x, dim=1)

summary(model, [(1, 300), (1, 300)], dtypes=[torch.float, torch.long])

Alternatively, you can also pass in the input_data itself, and torchinfo will automatically infer the data types.

input_data = torch.randn(1, 300)
other_input_data = torch.randn(1, 300).long()
model = MultipleInputNetDifferentDtypes()

summary(model, input_data=[input_data, other_input_data, ...])

Sequentials & ModuleLists

class ContainerModule(nn.Module):
    """ Model using ModuleList. """

def __init__(self):
    super().__init__()
    self._layers = nn.ModuleList()
    self._layers.append(nn.Linear(5, 5))
    self._layers.append(ContainerChildModule())
    self._layers.append(nn.Linear(5, 5))

def forward(self, x):
    for layer in self._layers:
        x = layer(x)
    return x

class ContainerChildModule(nn.Module): """ Model using Sequential in different ways. """

def __init__(self):
    super().__init__()
    self._sequential = nn.Sequential(nn.Linear(5, 5), nn.Linear(5, 5))
    self._between = nn.Linear(5, 5)

def forward(self, x):
    out = self._sequential(x)
    out = self._between(out)
    for l in self._sequential:
        out = l(out)

    out = self._sequential(x)
    for l in self._sequential:
        out = l(out)
    return out

summary(ContainerModule(), (1, 5))

==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
ContainerModule                          --                        --
├─ModuleList: 1-1                        --                        --
│    └─Linear: 2-1                       [1, 5]                    30
│    └─ContainerChildModule: 2-2         [1, 5]                    --
│    │    └─Sequential: 3-1              [1, 5]                    --
│    │    │    └─Linear: 4-1             [1, 5]                    30
│    │    │    └─Linear: 4-2             [1, 5]                    30
│    │    └─Linear: 3-2                  [1, 5]                    30
│    │    └─Sequential: 3                --                        --
│    │    │    └─Linear: 4-3             [1, 5]                    (recursive)
│    │    │    └─Linear: 4-4             [1, 5]                    (recursive)
│    │    └─Sequential: 3-3              [1, 5]                    (recursive)
│    │    │    └─Linear: 4-5             [1, 5]                    (recursive)
│    │    │    └─Linear: 4-6             [1, 5]                    (recursive)
│    │    │    └─Linear: 4-7             [1, 5]                    (recursive)
│    │    │    └─Linear: 4-8             [1, 5]                    (recursive)
│    └─Linear: 2-3                       [1, 5]                    30
==========================================================================================
Total params: 150
Trainable params: 150
Non-trainable params: 0
Total mult-adds (M): 0.00
==========================================================================================
Input size (MB): 0.00
Forward/backward pass size (MB): 0.00
Params size (MB): 0.00
Estimated Total Size (MB): 0.00
==========================================================================================

Contributing

All issues and pull requests are much appreciated! If you are wondering how to build the project:

  • torchinfo is actively developed using the lastest version of Python.
    • Changes should be backward compatible with Python 3.6, but this is subject to change in the future.
    • Run
      pip install -r requirements-dev.txt
      . We use the latest versions of all dev packages.
    • Run
      pre-commit install
      .
    • To use auto-formatting tools, use
      pre-commit run -a
      .
    • To run unit tests, run
      pytest
      .
    • To update the expected output files, run
      pytest --overwrite
      .
    • To skip output file tests, use
      pytest --no-output

References

  • Thanks to @sksq96, @nmhkahn, and @sangyx for providing the inspiration for this project.
  • For Model Size Estimation @jacobkimmel (details here)

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.