by Tiiiger

Tiiiger /SGC

official implementation for the paper "Simplifying Graph Convolutional Networks"

480 Stars 89 Forks Last release: Not found MIT License 21 Commits 0 Releases

Available items

No Items, yet!

The developer of this repository has not created any items for sale yet. Need a bug fixed? Help with integration? A different license? Create a request here:

Simplifying Graph Convolutional Networks

made-with-python License: MIT


  • Practical advice: it is often very helpful to normalize the features to have zero mean with standard deviation one to accelerate the convergence of SGC (and many other linear models). For example, we apply this normalization for the reddit dataset. Please consider doing this when applying SGC to other datasets. For some relevant discussions, see Ross et al, 2013 and Li and Zhang, 1998.


*: Equal Contribution


This repo contains an example implementation of the Simple Graph Convolution (SGC) model, described in the ICML2019 paper Simplifying Graph Convolutional Networks.

SGC removes the nonlinearities and collapes the weight matrices in Graph Convolutional Networks (GCNs) and is essentially a linear model. For an illustration,

SGC achieves competitive performance while saving much training time. For reference, on a GTX 1080 Ti,


Metric Training Time
Cora Acc: 81.0 % 0.13s
Citeseer Acc: 71.9 % 0.14s
Pubmed Acc: 78.9 % 0.29s
Reddit F1: 94.9 % 2.7s

This home repo contains the implementation for citation networks (Cora, Citeseer, and Pubmed) and social network (Reddit). We have a work-in-progress branch ablation, containing additional codebase for our ablation studies.

If you find this repo useful, please cite:

  title =    {Simplifying Graph Convolutional Networks},
  author =   {Wu, Felix and Souza, Amauri and Zhang, Tianyi and Fifty, Christopher and Yu, Tao and Weinberger, Kilian},
  booktitle =    {Proceedings of the 36th International Conference on Machine Learning},
  pages =    {6861--6871},
  year =     {2019},
  publisher =    {PMLR},

Other reference implementations

Other reference implementations can be found in the follwing libraries. Note that in these examples, the hyperparameters are potentially different and the results would be different from the paper reported ones.


Our implementation works with PyTorch>=1.0.0 Install other dependencies:

$ pip install -r requirement.txt


We provide the citation network datasets under

, which corresponds to the public data splits. Due to space limit, please download reddit dataset from FastGCN and put


Citation Networks: We tune the only hyperparameter, weight decay, with hyperopt and put the resulting hyperparameter under

. See
for more details on hyperparameter optimization.
$ python --dataset cora --tuned
$ python --dataset citeseer --tuned --epochs 150 
$ python --dataset pubmed --tuned


$ python --inductive --test


We collect the code base for downstream tasks under

. Currently, we are releasing only SGC implementation for text classification.


This repo is modified from pygcn, and FastGCN.

We thank Deep Graph Library team for helping providing a reference implementation of SGC and benchmarking SGC in Deep Graph Library. We thank Matthias Fey, author of PyTorch Geometric, for his help on providing a reference implementation of SGC within PyTorch Geometric. We thank Daniele Grattarola, author of Spektral, for his help on providing a reference implementation of SGC within Spektral.

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.