Need help with Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

TarrySingh
2.7K Stars 1.4K Forks Other 1.3K Commits 84 Opened issues

Description

A comprehensive list of Deep Learning / Artificial Intelligence and Machine Learning tutorials - rapidly expanding into areas of AI/Deep Learning / Machine Vision / NLP and industry specific areas such as Climate / Energy, Automotives, Retail, Pharma, Medicine, Healthcare, Policy, Ethics and more.

Services available

!
?

Need anything else?

Contributors list

# 1,450
capsule...
torch
MATLAB
Amazon ...
1295 commits

NEW LIST 2020 - 2021: Machine-Learning / Deep-Learning / AI -Tutorials

Hi - Thanks for dropping by!

I will be updating this tutorials site on a daily basis adding all relevant topcis, including latest researches papers from internet such as arxiv.org, BIORXIV - Specifically Neuroscience to name a few.

More importantly the applications of ML/DL/AI into industry areas such as Transportation, Medicine/Healthcare etc. will be something I'll watch with keen interest and would love to share the same with you.
Finally, it is YOUR help I will seek to make it more useful and less boring, so please do suggest/comment/contribute!

Index

deep-learning

IPython Notebook(s) and other programming tools such as Torch/Lua/D lang in demonstrating deep learning functionality.

uber-pyro-probabalistic-tutorials

Additional PyRo tutorials:

netflix-vectorflow-tutorials

pytorch-tutorials

| Level | Description | |--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Beginners/Zakizhou | Learning the basics of PyTorch from Facebook. | | Intermedia/Quanvuong | Learning the intermediate stuff about PyTorch of from Facebook. | | Advanced/Chsasank | Learning the advanced stuff about PyTorch of from Facebook. | | Learning PyTorch by Examples - Numpy, Tensors and Autograd | At its core, PyTorch provides two main features an n-dimensional Tensor, similar to numpy but can run on GPUs AND automatic differentiation for building and training neural networks. | | PyTorch - Getting to know autograd.Variable, Gradient, Neural Network | Here we start with ultimate basics of Tensors, wrap a Tensor with Variable module, play with nn.Module and implement forward and backward function. |

tensor-flow-tutorials


Additional TensorFlow tutorials:

| Notebook | Description | |--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| | tsf-basics | Learn basic operations in TensorFlow, a library for various kinds of perceptual and language understanding tasks from Google. | | tsf-linear | Implement linear regression in TensorFlow. | | tsf-logistic | Implement logistic regression in TensorFlow. | | tsf-nn | Implement nearest neighboars in TensorFlow. | | tsf-alex | Implement AlexNet in TensorFlow. | | tsf-cnn | Implement convolutional neural networks in TensorFlow. | | tsf-mlp | Implement multilayer perceptrons in TensorFlow. | | tsf-rnn | Implement recurrent neural networks in TensorFlow. | | tsf-gpu | Learn about basic multi-GPU computation in TensorFlow. | | tsf-gviz | Learn about graph visualization in TensorFlow. | | tsf-lviz | Learn about loss visualization in TensorFlow. |

tensor-flow-exercises

| Notebook | Description | |--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| | tsf-not-mnist | Learn simple data curation by creating a pickle with formatted datasets for training, development and testing in TensorFlow. | | tsf-fully-connected | Progressively train deeper and more accurate models using logistic regression and neural networks in TensorFlow. | | tsf-regularization | Explore regularization techniques by training fully connected networks to classify notMNIST characters in TensorFlow. | | tsf-convolutions | Create convolutional neural networks in TensorFlow. | | tsf-word2vec | Train a skip-gram model over Text8 data in TensorFlow. | | tsf-lstm | Train a LSTM character model over Text8 data in TensorFlow. |


theano-tutorials

| Notebook | Description | |--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| | theano-intro | Intro to Theano, which allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation. | | theano-scan | Learn scans, a mechanism to perform loops in a Theano graph. | | theano-logistic | Implement logistic regression in Theano. | | theano-rnn | Implement recurrent neural networks in Theano. | | theano-mlp | Implement multilayer perceptrons in Theano. |


keras-tutorials

| Notebook | Description | |--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| | keras | Keras is an open source neural network library written in Python. It is capable of running on top of either Tensorflow or Theano. | | setup | Learn about the tutorial goals and how to set up your Keras environment. | | intro-deep-learning-ann | Get an intro to deep learning with Keras and Artificial Neural Networks (ANN). | | Perceptrons and Adaline | Implement Peceptron and adaptive linear neurons. | | MLP and MNIST Data | Classifying handwritten digits,implement MLP, train and debug ANN | | theano | Learn about Theano by working with weights matrices and gradients. | | keras-otto | Learn about Keras by looking at the Kaggle Otto challenge. | | ann-mnist | Review a simple implementation of ANN for MNIST using Keras. | | conv-nets | Learn about Convolutional Neural Networks (CNNs) with Keras. | | conv-net-1 | Recognize handwritten digits from MNIST using Keras - Part 1. | | conv-net-2 | Recognize handwritten digits from MNIST using Keras - Part 2. | | keras-models | Use pre-trained models such as VGG16, VGG19, ResNet50, and Inception v3 with Keras. | | auto-encoders | Learn about Autoencoders with Keras. | | rnn-lstm | Learn about Recurrent Neural Networks (RNNs) with Keras. | | lstm-sentence-gen | Learn about RNNs using Long Short Term Memory (LSTM) networks with Keras. | | nlp-deep-learning | Learn about NLP using ANN (Artificial Neural Networks. | | hyperparamter-tuning | Hyperparamters tuning using keras-wrapper.scikit-learn |

deep-learning-misc

| Notebook | Description | |--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| | deep-dream | Caffe-based computer vision program which uses a convolutional neural network to find and enhance patterns in images. |


scikit-learn

IPython Notebook(s) demonstrating scikit-learn functionality.

| Notebook | Description | |--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| | intro | Intro notebook to scikit-learn. Scikit-learn adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. | | knn | Implement k-nearest neighbors in scikit-learn. | | linear-reg | Implement linear regression in scikit-learn. | | svm | Implement support vector machine classifiers with and without kernels in scikit-learn. | | random-forest | Implement random forest classifiers and regressors in scikit-learn. | | k-means | Implement k-means clustering in scikit-learn. | | pca | Implement principal component analysis in scikit-learn. | | gmm | Implement Gaussian mixture models in scikit-learn. | | validation | Implement validation and model selection in scikit-learn. |


statistical-inference-scipy

IPython Notebook(s) demonstrating statistical inference with SciPy functionality.

| Notebook | Description | |--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| | scipy | SciPy is a collection of mathematical algorithms and convenience functions built on the Numpy extension of Python. It adds significant power to the interactive Python session by providing the user with high-level commands and classes for manipulating and visualizing data. | | effect-size | Explore statistics that quantify effect size by analyzing the difference in height between men and women. Uses data from the Behavioral Risk Factor Surveillance System (BRFSS) to estimate the mean and standard deviation of height for adult women and men in the United States. | | sampling | Explore random sampling by analyzing the average weight of men and women in the United States using BRFSS data. | | hypothesis | Explore hypothesis testing by analyzing the difference of first-born babies compared with others. |


pandas

IPython Notebook(s) demonstrating pandas functionality.

| Notebook | Description | |--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------| | pandas | Software library written for data manipulation and analysis in Python. Offers data structures and operations for manipulating numerical tables and time series. | | github-data-wrangling | Learn how to load, clean, merge, and feature engineer by analyzing GitHub data from the

Viz
repo. | | Introduction-to-Pandas | Introduction to Pandas. | | Introducing-Pandas-Objects | Learn about Pandas objects. | | Data Indexing and Selection | Learn about data indexing and selection in Pandas. | | Operations-in-Pandas | Learn about operating on data in Pandas. | | Missing-Values | Learn about handling missing data in Pandas. | | Hierarchical-Indexing | Learn about hierarchical indexing in Pandas. | | Concat-And-Append | Learn about combining datasets: concat and append in Pandas. | | Merge-and-Join | Learn about combining datasets: merge and join in Pandas. | | Aggregation-and-Grouping | Learn about aggregation and grouping in Pandas. | | Pivot-Tables | Learn about pivot tables in Pandas. | | Working-With-Strings | Learn about vectorized string operations in Pandas. | | Working-with-Time-Series | Learn about working with time series in pandas. | | Performance-Eval-and-Query | Learn about high-performance Pandas: eval() and query() in Pandas. |


matplotlib

IPython Notebook(s) demonstrating matplotlib functionality.

| Notebook | Description | |-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------| | matplotlib | Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. | | matplotlib-applied | Apply matplotlib visualizations to Kaggle competitions for exploratory data analysis. Learn how to create bar plots, histograms, subplot2grid, normalized plots, scatter plots, subplots, and kernel density estimation plots. | | Introduction-To-Matplotlib | Introduction to Matplotlib. | | Simple-Line-Plots | Learn about simple line plots in Matplotlib. | | Simple-Scatter-Plots | Learn about simple scatter plots in Matplotlib. | | Errorbars.ipynb | Learn about visualizing errors in Matplotlib. | | Density-and-Contour-Plots | Learn about density and contour plots in Matplotlib. | | Histograms-and-Binnings | Learn about histograms, binnings, and density in Matplotlib. | | Customizing-Legends | Learn about customizing plot legends in Matplotlib. | | Customizing-Colorbars | Learn about customizing colorbars in Matplotlib. | | Multiple-Subplots | Learn about multiple subplots in Matplotlib. | | Text-and-Annotation | Learn about text and annotation in Matplotlib. | | Customizing-Ticks | Learn about customizing ticks in Matplotlib. | | Settings-and-Stylesheets | Learn about customizing Matplotlib: configurations and stylesheets. | | Three-Dimensional-Plotting | Learn about three-dimensional plotting in Matplotlib. | | Geographic-Data-With-Basemap | Learn about geographic data with basemap in Matplotlib. | | Visualization-With-Seaborn | Learn about visualization with Seaborn. |


numpy

IPython Notebook(s) demonstrating NumPy functionality.

| Notebook | Description | |--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------| | numpy | Adds Python support for large, multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays. | | Introduction-to-NumPy | Introduction to NumPy. | | Understanding-Data-Types | Learn about data types in Python. | | The-Basics-Of-NumPy-Arrays | Learn about the basics of NumPy arrays. | | Computation-on-arrays-ufuncs | Learn about computations on NumPy arrays: universal functions. | | Computation-on-arrays-aggregates | Learn about aggregations: min, max, and everything in between in NumPy. | | Computation-on-arrays-broadcasting | Learn about computation on arrays: broadcasting in NumPy. | | Boolean-Arrays-and-Masks | Learn about comparisons, masks, and boolean logic in NumPy. | | Fancy-Indexing | Learn about fancy indexing in NumPy. | | Sorting | Learn about sorting arrays in NumPy. | | Structured-Data-NumPy | Learn about structured data: NumPy's structured arrays. |


python-data

IPython Notebook(s) demonstrating Python functionality geared towards data analysis.

| Notebook | Description | |-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------| | data structures | Learn Python basics with tuples, lists, dicts, sets. | | data structure utilities | Learn Python operations such as slice, range, xrange, bisect, sort, sorted, reversed, enumerate, zip, list comprehensions. | | functions | Learn about more advanced Python features: Functions as objects, lambda functions, closures, args, *kwargs currying, generators, generator expressions, itertools. | | datetime | Learn how to work with Python dates and times: datetime, strftime, strptime, timedelta. | | logging | Learn about Python logging with RotatingFileHandler and TimedRotatingFileHandler. | | pdb | Learn how to debug in Python with the interactive source code debugger. | | unit tests | Learn how to test in Python with Nose unit tests. |


kaggle-and-business-analyses

IPython Notebook(s) used in kaggle competitions and business analyses.

| Notebook | Description | |-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------| | titanic | Predict survival on the Titanic. Learn data cleaning, exploratory data analysis, and machine learning. | | churn-analysis | Predict customer churn. Exercise logistic regression, gradient boosting classifers, support vector machines, random forests, and k-nearest-neighbors. Includes discussions of confusion matrices, ROC plots, feature importances, prediction probabilities, and calibration/descrimination.|


spark

IPython Notebook(s) demonstrating spark and HDFS functionality.

| Notebook | Description | |--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------| | spark | In-memory cluster computing framework, up to 100 times faster for certain applications and is well suited for machine learning algorithms. | | hdfs | Reliably stores very large files across machines in a large cluster. |


mapreduce-python

IPython Notebook(s) demonstrating Hadoop MapReduce with mrjob functionality.

| Notebook | Description | |--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------| | mapreduce-python | Runs MapReduce jobs in Python, executing jobs locally or on Hadoop clusters. Demonstrates Hadoop Streaming in Python code with unit test and mrjob config file to analyze Amazon S3 bucket logs on Elastic MapReduce. Disco is another python-based alternative.|


aws

IPython Notebook(s) demonstrating Amazon Web Services (AWS) and AWS tools functionality.

Also check out:

  • SAWS: A Supercharged AWS command line interface (CLI).
  • Awesome AWS: A curated list of libraries, open source repos, guides, blogs, and other resources.

| Notebook | Description | |------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | boto | Official AWS SDK for Python. | | s3cmd | Interacts with S3 through the command line. | | s3distcp | Combines smaller files and aggregates them together by taking in a pattern and target file. S3DistCp can also be used to transfer large volumes of data from S3 to your Hadoop cluster. | | s3-parallel-put | Uploads multiple files to S3 in parallel. | | redshift | Acts as a fast data warehouse built on top of technology from massive parallel processing (MPP). | | kinesis | Streams data in real time with the ability to process thousands of data streams per second. | | lambda | Runs code in response to events, automatically managing compute resources. |


commands

IPython Notebook(s) demonstrating various command lines for Linux, Git, etc.

| Notebook | Description | |--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | linux | Unix-like and mostly POSIX-compliant computer operating system. Disk usage, splitting files, grep, sed, curl, viewing running processes, terminal syntax highlighting, and Vim.| | anaconda | Distribution of the Python programming language for large-scale data processing, predictive analytics, and scientific computing, that aims to simplify package management and deployment. | | ipython notebook | Web-based interactive computational environment where you can combine code execution, text, mathematics, plots and rich media into a single document. | | git | Distributed revision control system with an emphasis on speed, data integrity, and support for distributed, non-linear workflows. | | ruby | Used to interact with the AWS command line and for Jekyll, a blog framework that can be hosted on GitHub Pages. | | jekyll | Simple, blog-aware, static site generator for personal, project, or organization sites. Renders Markdown or Textile and Liquid templates, and produces a complete, static website ready to be served by Apache HTTP Server, Nginx or another web server. | | pelican | Python-based alternative to Jekyll. | | django | High-level Python Web framework that encourages rapid development and clean, pragmatic design. It can be useful to share reports/analyses and for blogging. Lighter-weight alternatives include Pyramid, Flask, Tornado, and Bottle.

misc

IPython Notebook(s) demonstrating miscellaneous functionality.

| Notebook | Description | |--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | regex | Regular expression cheat sheet useful in data wrangling.| algorithmia | Algorithmia is a marketplace for algorithms. This notebook showcases 4 different algorithms: Face Detection, Content Summarizer, Latent Dirichlet Allocation and Optical Character Recognition.|

notebook-installation

anaconda

Anaconda is a free distribution of the Python programming language for large-scale data processing, predictive analytics, and scientific computing that aims to simplify package management and deployment.

Follow instructions to install Anaconda or the more lightweight miniconda.

dev-setup

For detailed instructions, scripts, and tools to set up your development environment for data analysis, check out the dev-setup repo.

running-notebooks

Note: If you intend to learn the hard way (preferred method)then I'd strongly advice to write as much code as you can yourself and not just run pre-written code. If you still want to test it, then do the following:

To view interactive content or to modify elements within the IPython notebooks, you must first clone or download the repository then run the notebook. More information on IPython Notebooks can be found here.

$ git clone https://github.com/TarrySingh/Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials.git
$ cd Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials
$ jupyter notebook

Notebooks tested with Python 3.7+

curated-list-of-deeplearning-blogs

  • A Blog From a Human-engineer-being http://www.erogol.com/ (RSS)
  • Aakash Japi http://aakashjapi.com/ (RSS)
  • Adit Deshpande https://adeshpande3.github.io/ (RSS)
  • Advanced Analytics & R http://advanceddataanalytics.net/ (RSS)
  • Adventures in Data Land http://blog.smola.org (RSS)
  • Agile Data Science http://blog.sense.io/ (RSS)
  • Ahmed El Deeb https://medium.com/@D33B (RSS)
  • Airbnb Data blog http://nerds.airbnb.com/data/ (RSS)
  • Alex Castrounis | InnoArchiTech http://www.innoarchitech.com/ (RSS)
  • Alex Perrier http://alexperrier.github.io/ (RSS)
  • Algobeans | Data Analytics Tutorials & Experiments for the Layman https://algobeans.com (RSS)
  • Amazon AWS AI Blog https://aws.amazon.com/blogs/ai/ (RSS)
  • Analytics Vidhya http://www.analyticsvidhya.com/blog/ (RSS)
  • Analytics and Visualization in Big Data @ Sicara https://blog.sicara.com (RSS)
  • Andreas Müller http://peekaboo-vision.blogspot.com/ (RSS)
  • Andrej Karpathy blog http://karpathy.github.io/ (RSS)
  • Andrew Brooks http://brooksandrew.github.io/simpleblog/ (RSS)
  • Andrey Kurenkov http://www.andreykurenkov.com/writing/ (RSS)
  • Anton Lebedevich's Blog http://mabrek.github.io/ (RSS)
  • Arthur Juliani https://medium.com/@awjuliani (RSS)
  • Audun M. Øygard http://www.auduno.com/ (RSS)
  • Avi Singh https://avisingh599.github.io/ (RSS)
  • Beautiful Data http://beautifuldata.net/ (RSS)
  • Beckerfuffle http://mdbecker.github.io/ (RSS)
  • Becoming A Data Scientist http://www.becomingadatascientist.com/ (RSS)
  • Ben Bolte's Blog http://benjaminbolte.com/ml/ (RSS)
  • Ben Frederickson http://www.benfrederickson.com/blog/ (RSS)
  • Berkeley AI Research http://bair.berkeley.edu/blog/ (RSS)
  • Big-Ish Data http://bigishdata.com/ (RSS)
  • Blog on neural networks http://yerevann.github.io/ (RSS)
  • Blogistic RegressionAbout Projects http://d10genes.github.io/blog/ (RSS)
  • blogR | R tips and tricks from a scientist https://drsimonj.svbtle.com/ (RSS)
  • Brain of mat kelcey http://matpalm.com/blog/ (RSS)
  • Brilliantly wrong thoughts on science and programming https://arogozhnikov.github.io/ (RSS)
  • Bugra Akyildiz http://bugra.github.io/ (RSS)
  • Building Babylon https://building-babylon.net/ (RSS)
  • Carl Shan http://carlshan.com/ (RSS)
  • Chris Stucchio https://www.chrisstucchio.com/blog/index.html (RSS)
  • Christophe Bourguignat https://medium.com/@chris_bour (RSS)
  • Christopher Nguyen https://medium.com/@ctn (RSS)
  • Cloudera Data Science Posts http://blog.cloudera.com/blog/category/data-science/ (RSS)
  • colah's blog http://colah.github.io/archive.html (RSS)
  • Cortana Intelligence and Machine Learning Blog https://blogs.technet.microsoft.com/machinelearning/ (RSS)
  • Daniel Forsyth http://www.danielforsyth.me/ (RSS)
  • Daniel Homola http://danielhomola.com/category/blog/ (RSS)
  • Daniel Nee http://danielnee.com (RSS)
  • Data Based Inventions http://datalab.lu/ (RSS)
  • Data Blogger https://www.data-blogger.com/ (RSS)
  • Data Labs http://blog.insightdatalabs.com/ (RSS)
  • Data Meets Media http://datameetsmedia.com/ (RSS)
  • Data Miners Blog http://blog.data-miners.com/ (RSS)
  • Data Mining Research http://www.dataminingblog.com/ (RSS)
  • Data Mining: Text Mining, Visualization and Social Media http://datamining.typepad.com/data_mining/ (RSS)
  • Data Piques http://blog.ethanrosenthal.com/ (RSS)
  • Data School http://www.dataschool.io/ (RSS)
  • Data Science 101 http://101.datascience.community/ (RSS)
  • Data Science @ Facebook https://research.facebook.com/blog/datascience/ (RSS)
  • Data Science Insights http://www.datasciencebowl.com/data-science-insights/ (RSS)
  • Data Science Tutorials https://codementor.io/data-science/tutorial (RSS)
  • Data Science Vademecum http://datasciencevademecum.wordpress.com/ (RSS)
  • Dataaspirant http://dataaspirant.com/ (RSS)
  • Dataclysm http://blog.okcupid.com/ (RSS)
  • DataGenetics http://datagenetics.com/blog.html (RSS)
  • Dataiku https://www.dataiku.com/blog/ (RSS)
  • DataKind http://www.datakind.org/blog (RSS)
  • DataLook http://blog.datalook.io/ (RSS)
  • Datanice https://datanice.wordpress.com/ (RSS)
  • Dataquest Blog https://www.dataquest.io/blog/ (RSS)
  • DataRobot http://www.datarobot.com/blog/ (RSS)
  • Datascope http://datascopeanalytics.com/blog (RSS)
  • DatasFrame http://tomaugspurger.github.io/ (RSS)
  • David Mimno http://www.mimno.org/ (RSS)
  • Dayne Batten http://daynebatten.com (RSS)
  • Deep Learning http://deeplearning.net/blog/ (RSS)
  • Deepdish http://deepdish.io/ (RSS)
  • Delip Rao http://deliprao.com/ (RSS)
  • DENNY'S BLOG http://blog.dennybritz.com/ (RSS)
  • Dimensionless https://dimensionless.in/blog/ (RSS)
  • Distill http://distill.pub/ (RSS)
  • District Data Labs http://districtdatalabs.silvrback.com/ (RSS)
  • Diving into data https://blog.datadive.net/ (RSS)
  • Domino Data Lab's blog http://blog.dominodatalab.com/ (RSS)
  • Dr. Randal S. Olson http://www.randalolson.com/blog/ (RSS)
  • Drew Conway https://medium.com/@drewconway (RSS)
  • Dustin Tran http://dustintran.com/blog/ (RSS)
  • Eder Santana https://edersantana.github.io/blog.html (RSS)
  • Edwin Chen http://blog.echen.me (RSS)
  • EFavDB http://efavdb.com/ (RSS)
  • Emilio Ferrara, Ph.D. http://www.emilio.ferrara.name/ (RSS)
  • Entrepreneurial Geekiness http://ianozsvald.com/ (RSS)
  • Eric Jonas http://ericjonas.com/archives.html (RSS)
  • Eric Siegel http://www.predictiveanalyticsworld.com/blog (RSS)
  • Erik Bern http://erikbern.com (RSS)
  • ERIN SHELLMAN http://www.erinshellman.com/ (RSS)
  • Eugenio Culurciello http://culurciello.github.io/ (RSS)
  • Fabian Pedregosa http://fa.bianp.net/ (RSS)
  • Fast Forward Labs http://blog.fastforwardlabs.com/ (RSS)
  • FastML http://fastml.com/ (RSS)
  • Florian Hartl http://florianhartl.com/ (RSS)
  • FlowingData http://flowingdata.com/ (RSS)
  • Full Stack ML http://fullstackml.com/ (RSS)
  • GAB41 http://www.lab41.org/gab41/ (RSS)
  • Garbled Notes http://www.chioka.in/ (RSS)
  • Greg Reda http://www.gregreda.com/blog/ (RSS)
  • Hyon S Chu https://medium.com/@adailyventure (RSS)
  • i am trask http://iamtrask.github.io/ (RSS)
  • I Quant NY http://iquantny.tumblr.com/ (RSS)
  • inFERENCe http://www.inference.vc/ (RSS)
  • Insight Data Science https://blog.insightdatascience.com/ (RSS)
  • INSPIRATION INFORMATION http://myinspirationinformation.com/ (RSS)
  • Ira Korshunova http://irakorshunova.github.io/ (RSS)
  • I’m a bandit https://blogs.princeton.edu/imabandit/ (RSS)
  • Jason Toy http://www.jtoy.net/ (RSS)
  • Jeremy D. Jackson, PhD http://www.jeremydjacksonphd.com/ (RSS)
  • Jesse Steinweg-Woods https://jessesw.com/ (RSS)
  • Joe Cauteruccio http://www.joecjr.com/ (RSS)
  • John Myles White http://www.johnmyleswhite.com/ (RSS)
  • John's Soapbox http://joschu.github.io/ (RSS)
  • Jonas Degrave http://317070.github.io/ (RSS)
  • Joy Of Data http://www.joyofdata.de/blog/ (RSS)
  • Julia Evans http://jvns.ca/ (RSS)
  • KDnuggets http://www.kdnuggets.com/ (RSS)
  • Keeping Up With The Latest Techniques http://colinpriest.com/ (RSS)
  • Kenny Bastani http://www.kennybastani.com/ (RSS)
  • Kevin Davenport http://kldavenport.com/ (RSS)
  • kevin frans http://kvfrans.com/ (RSS)
  • korbonits | Math ∩ Data http://korbonits.github.io/ (RSS)
  • Large Scale Machine Learning http://bickson.blogspot.com/ (RSS)
  • LATERAL BLOG https://blog.lateral.io/ (RSS)
  • Lazy Programmer http://lazyprogrammer.me/ (RSS)
  • Learn Analytics Here https://learnanalyticshere.wordpress.com/ (RSS)
  • LearnDataSci http://www.learndatasci.com/ (RSS)
  • Learning With Data http://learningwithdata.com/ (RSS)
  • Life, Language, Learning http://daoudclarke.github.io/ (RSS)
  • Locke Data https://itsalocke.com/blog/ (RSS)
  • Louis Dorard http://www.louisdorard.com/blog/ (RSS)
  • M.E.Driscoll http://medriscoll.com/ (RSS)
  • Machinalis http://www.machinalis.com/blog (RSS)
  • Machine Learning (Theory) http://hunch.net/ (RSS)
  • Machine Learning and Data Science http://alexhwoods.com/blog/ (RSS)
  • Machine Learning https://charlesmartin14.wordpress.com/ (RSS)
  • Machine Learning Mastery http://machinelearningmastery.com/blog/ (RSS)
  • Machine Learning Blogs https://machinelearningblogs.com/ (RSS)
  • Machine Learning, etc http://yaroslavvb.blogspot.com (RSS)
  • Machine Learning, Maths and Physics https://mlopezm.wordpress.com/ (RSS)
  • Machine Learning Flashcards https://machinelearningflashcards.com/ $10, but a nicely illustrated set of 300 flash cards
  • Machined Learnings http://www.machinedlearnings.com/ (RSS)
  • MAPPING BABEL https://jack-clark.net/ (RSS)
  • MAPR Blog https://www.mapr.com/blog (RSS)
  • MAREK REI http://www.marekrei.com/blog/ (RSS)
  • MARGINALLY INTERESTING http://blog.mikiobraun.de/ (RSS)
  • Math ∩ Programming http://jeremykun.com/ (RSS)
  • Matthew Rocklin http://matthewrocklin.com/blog/ (RSS)
  • Melody Wolk http://melodywolk.com/projects/ (RSS)
  • Mic Farris http://www.micfarris.com/ (RSS)
  • Mike Tyka http://mtyka.github.io/ (RSS)
  • minimaxir | Max Woolf's Blog http://minimaxir.com/ (RSS)
  • Mirror Image https://mirror2image.wordpress.com/ (RSS)
  • Mitch Crowe http://www.dataphoric.com/ (RSS)
  • MLWave http://mlwave.com/ (RSS)
  • MLWhiz http://mlwhiz.com/ (RSS)
  • Models are illuminating and wrong https://peadarcoyle.wordpress.com/ (RSS)
  • Moody Rd http://blog.mrtz.org/ (RSS)
  • Moonshots http://jxieeducation.com/ (RSS)
  • Mourad Mourafiq http://mourafiq.com/ (RSS)
  • My thoughts on Data science, predictive analytics, Python http://shahramabyari.com/ (RSS)
  • Natural language processing blog http://nlpers.blogspot.fr/ (RSS)
  • Neil Lawrence http://inverseprobability.com/blog.html (RSS)
  • NLP and Deep Learning enthusiast http://camron.xyz/ (RSS)
  • no free hunch http://blog.kaggle.com/ (RSS)
  • Nuit Blanche http://nuit-blanche.blogspot.com/ (RSS)
  • Number 2147483647 https://no2147483647.wordpress.com/ (RSS)
  • On Machine Intelligence https://aimatters.wordpress.com/ (RSS)
  • Opiate for the masses Data is our religion. http://opiateforthemass.es/ (RSS)
  • p-value.info http://www.p-value.info/ (RSS)
  • Pete Warden's blog http://petewarden.com/ (RSS)
  • Plotly Blog http://blog.plot.ly/ (RSS)
  • Probably Overthinking It http://allendowney.blogspot.ca/ (RSS)
  • Prooffreader.com http://www.prooffreader.com (RSS)
  • ProoffreaderPlus http://prooffreaderplus.blogspot.ca/ (RSS)
  • Publishable Stuff http://www.sumsar.net/ (RSS)
  • PyImageSearch http://www.pyimagesearch.com/ (RSS)
  • Pythonic Perambulations https://jakevdp.github.io/ (RSS)
  • quintuitive http://quintuitive.com/ (RSS)
  • R and Data Mining https://rdatamining.wordpress.com/ (RSS)
  • R-bloggers http://www.r-bloggers.com/ (RSS)
  • R2RT http://r2rt.com/ (RSS)
  • Ramiro Gómez http://ramiro.org/notebooks/ (RSS)
  • Random notes on Computer Science, Mathematics and Software Engineering http://barmaley-exe.github.io/ (RSS)
  • Randy Zwitch http://randyzwitch.com/ (RSS)
  • RaRe Technologies http://rare-technologies.com/blog/ (RSS)
  • Rayli.Net http://rayli.net/blog/ (RSS)
  • Revolutions http://blog.revolutionanalytics.com/ (RSS)
  • Rinu Boney http://rinuboney.github.io/ (RSS)
  • RNDuja Blog http://rnduja.github.io/ (RSS)
  • Robert Chang https://medium.com/@rchang (RSS)
  • Rocket-Powered Data Science http://rocketdatascience.org (RSS)
  • Sachin Joglekar's blog https://codesachin.wordpress.com/ (RSS)
  • samim https://medium.com/@samim (RSS)
  • Sean J. Taylor http://seanjtaylor.com/ (RSS)
  • Sebastian Raschka http://sebastianraschka.com/blog/index.html (RSS)
  • Sebastian Ruder http://sebastianruder.com/ (RSS)
  • Sebastian's slow blog http://www.nowozin.net/sebastian/blog/ (RSS)
  • SFL Scientific Blog https://sflscientific.com/blog/ (RSS)
  • Shakir's Machine Learning Blog http://blog.shakirm.com/ (RSS)
  • Simply Statistics http://simplystatistics.org (RSS)
  • Springboard Blog http://springboard.com/blog
  • Startup.ML Blog http://startup.ml/blog (RSS)
  • Statistical Modeling, Causal Inference, and Social Science http://andrewgelman.com/ (RSS)
  • Stigler Diet http://stiglerdiet.com/ (RSS)
  • Stitch Fix Tech Blog http://multithreaded.stitchfix.com/blog/ (RSS)
  • Stochastic R&D Notes http://arseny.info/ (RSS)
  • Storytelling with Statistics on Quora http://datastories.quora.com/ (RSS)
  • StreamHacker http://streamhacker.com/ (RSS)
  • Subconscious Musings http://blogs.sas.com/content/subconsciousmusings/ (RSS)
  • Swan Intelligence http://swanintelligence.com/ (RSS)
  • TechnoCalifornia http://technocalifornia.blogspot.se/ (RSS)
  • TEXT ANALYSIS BLOG | AYLIEN http://blog.aylien.com/ (RSS)
  • The Angry Statistician http://angrystatistician.blogspot.com/ (RSS)
  • The Clever Machine https://theclevermachine.wordpress.com/ (RSS)
  • The Data Camp Blog https://www.datacamp.com/community/blog (RSS)
  • The Data Incubator http://blog.thedataincubator.com/ (RSS)
  • The Data Science Lab https://datasciencelab.wordpress.com/ (RSS)
  • THE ETZ-FILES http://alexanderetz.com/ (RSS)
  • The Science of Data http://www.martingoodson.com (RSS)
  • The Shape of Data https://shapeofdata.wordpress.com (RSS)
  • The unofficial Google data science Blog http://www.unofficialgoogledatascience.com/ (RSS)
  • Tim Dettmers http://timdettmers.com/ (RSS)
  • Tombone's Computer Vision Blog http://www.computervisionblog.com/ (RSS)
  • Tommy Blanchard http://tommyblanchard.com/category/projects (RSS)
  • Trevor Stephens http://trevorstephens.com/ (RSS)
  • Trey Causey http://treycausey.com/ (RSS)
  • UW Data Science Blog http://datasciencedegree.wisconsin.edu/blog/ (RSS)
  • Wellecks http://wellecks.wordpress.com/ (RSS)
  • Wes McKinney http://wesmckinney.com/archives.html (RSS)
  • While My MCMC Gently Samples http://twiecki.github.io/ (RSS)
  • WildML http://www.wildml.com/ (RSS)
  • Will do stuff for stuff http://rinzewind.org/blog-en (RSS)
  • Will wolf http://willwolf.io/ (RSS)
  • WILL'S NOISE http://www.willmcginnis.com/ (RSS)
  • William Lyon http://www.lyonwj.com/ (RSS)
  • Win-Vector Blog http://www.win-vector.com/blog/ (RSS)
  • Yanir Seroussi http://yanirseroussi.com/ (RSS)
  • Zac Stewart http://zacstewart.com/ (RSS)
  • ŷhat http://blog.yhat.com/ (RSS)
  • ℚuantitative √ourney http://outlace.com/ (RSS)
  • 大トロ http://blog.otoro.net/ (RSS)

credits

contributing

Contributions are welcome! For bug reports or requests please submit an issue.

contact-info

Feel free to contact me to discuss any issues, questions, or comments.

license

This repository contains a variety of content; some developed by Tarry Singh and some from third-parties and a lot will be maintained by me. The third-party content is distributed under the license provided by those parties.

The content was originally developed by Donne Martin is distributed under the following license. I will be maintaining and revamping it by adding PyTorch, Torch/Lua, MXNET and much more:

I am providing code and resources in this repository to you under an open source license.

Copyright 2017 Tarry Singh

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.