Need help with Machine-Learning-is-ALL-You-Need?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

228 Stars 46 Forks 123 Commits 0 Opened issues


🔥🌟《Machine Learning 格物志》: ML + DL + RL basic codes and notes by sklearn, PyTorch, TensorFlow, Keras & the most important, from scratch!💪 This repository is ALL You Need!

Services available


Need anything else?

Contributors list

# 109,180
106 commits





格物 (Ko Wu) which means 'investigate the essence of things' in English is a key method for study and better understanding of the knowledge. It is proposed by ancient Chinese philosophers about 2000 years ago and has a profound impact on later generations. The spirit of Ko Wu asks us to not only learn how to use knowledge, but also clearly understand the intrinsic theory. Therefore, it is necessary to re-implement ML algorithms by ourselves to figure out what exactly they did and why they succeed.

This repository aims to implement popular Machine Learning and Deep Learning algorithms by both pure python and use open-source frameworks.

  • Common Machine Learning Part: switch by
    in the main function;
  • Deep Learning Part: four implement methods for each algorithm (
  • Applications Part: RL + NLP + CV
  • New trend: GNNs

Welcome everyone to help me finish this Ko Wu project by pulling requests or giving me some suggestions and issues!!!

关联知乎专栏 Associated Zhihu Blog

RL in Robotics

Machine Learning 格物志

代码目录 Code Catalog


  1. Single Linear Regression
  2. Multiple Linear Regression


  1. Logistic Regression
  2. KNN
  3. Support Vector Machine
  4. Naive Bayes

Regression & Classification

  1. Decision Tree
  2. Random Forest

Neural Network

  1. Feedforward Neural Network
  2. Convolutional Neural Network
  3. LSTM

Unsupervised Learning

  1. PCA
  2. K-Means

Ensemble Model

  1. Boosting

Reinforcement Learning

  1. Value Based Methods: Q-learning(Tabular), DQN
  2. Policy Based Methods: Vanilla Policy Gradient, TRPO, PPO
  3. Actor-Critic Structure: AC, A2C, A3C
  4. Deep Deterministic Policy Gradient: DDPG, DDPG C++ (Undone), TD3
  5. Soft Actor-Critic

Computer Vision

  1. GAN
  2. Resnet: Pytorch version, libtorch C++ version

Natural Language Processing

  1. Attention mechanism
  2. Transformer
  3. BERT

Graph Neural Networks

  1. Graph Neural Network (GNN)
  2. Graph Convolutional Neural Network (GCN)
  3. Graph Attention Networks (GAT)
  4. GraphSAGE
  5. GraphRNN
  6. Variational Graph Auto-Encoders (GAE)

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.