Need help with pytorch-NetVlad?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

Nanne
209 Stars 59 Forks 8 Commits 1 Opened issues

Description

Pytorch implementation of NetVlad including training on Pittsburgh.

Services available

!
?

Need anything else?

Contributors list

# 320,053
C++
animate...
Python
5 commits
# 138,074
Shell
HTML
MATLAB
pytorch
1 commit

pytorch-NetVlad

Implementation of NetVlad in PyTorch, including code for training the model on the Pittsburgh dataset.

Reproducing the paper

Below are the result as compared to the results in third row in the right column of Table 1:

| |[email protected]|[email protected]|[email protected]| |---|---|---|---| | NetVlad paper | 84.1 | 94.6 | 95.5 | | pytorch-NetVlad(alexnet) | 68.6 | 84.6 | 89.3 | | pytorch-NetVlad(vgg16) | 85.2 | 94.8 | 97.0 |

Running main.py with train mode and default settings should give similar scores to the ones shown above. Additionally, the model state for the above run is available here: https://drive.google.com/open?id=17luTjZFCX639guSVy00OUtzfTQo4AMF2

Using this checkpoint and the following command you can obtain the results shown above:

python main.py --mode=test --split=val --resume=vgg16_netvlad_checkpoint/

Setup

Dependencies

  1. PyTorch (at least v0.4.0)
  2. Faiss
  3. scipy
  4. tensorboardX

Data

Running this code requires a copy of the Pittsburgh 250k (available here), and the dataset specifications for the Pittsburgh dataset (available here).

pittsburgh.py
contains a hardcoded path to a directory, where the code expects directories
000
to
010
with the various Pittsburth database images, a directory
queries_real
with subdirectories
000
to
010
with the query images, and a directory
datasets
with the dataset specifications (.mat files).

Usage

main.py
contains the majority of the code, and has three different modes (
train
,
test
,
cluster
) which we'll discuss in mode detail below.

Train

In order to initialise the NetVlad layer it is necessary to first run

main.py
with the correct settings and
--mode=cluster
. After which a model can be trained using (the following default flags):
python main.py --mode=train --arch=vgg16 --pooling=netvlad --num_clusters=64

The commandline args, the tensorboard data, and the model state will all be saved to

opt.runsPath
, which subsequently can be used for testing, or to resuming training.

For more information on all commandline arguments run:

python main.py --help

Test

To test a previously trained model on the Pittsburgh 30k testset (replace directory with correct dir for your case):

python main.py --mode=test --resume=runsPath/Nov19_12-00-00_vgg16_netvlad --split=test

The commandline arguments for training were saved, so we shouldnt need to specify them for testing. Additionally, to obtain the 'off the shelf' performance we can also omit the resume directory:

python main.py --mode=test

Cluster

In order to initialise the NetVlad layer we need to first sample from the data and obtain

opt.num_clusters
centroids. This step is necessary for each configuration of the network and for each dataset. To cluster simply run
python main.py --mode=cluster --arch=vgg16 --pooling=netvlad --num_clusters=64

with the correct values for any additional commandline arguments.

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.