Need help with CNN_sentence_tensorflow?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.

About the developer

LambdaWx
130 Stars 86 Forks 6 Commits 9 Opened issues

Description

卷积神经网络(CNN)应用于中文文本分析任务

Services available

!
?

Need anything else?

Contributors list

No Data

CNNsentencetensorflow

卷积神经网络(CNN)应用于中文文本分析任务: 深度学习近一段时间以来在图像处理和NLP任务上都取得了不俗的成绩。通常,图像处理的任务是借助CNN来完成的,其特有的卷积、池化结构能够提取图像中各种不同程度的纹理、结构,并最终结合全连接网络实现信息的汇总和输出。RNN由于其记忆功能为处理NLP中的上下文提供了途径。 在短文本分析任务中,由于句子句长长度有限、结构紧凑、能够独立表达意思,使得CNN在处理这一类问题上成为可能。

本CNN模型结够包括四部分: 1、 输入层:

如图所示,输入层是句子中的词语对应的wordvector依次(从上到下)排列的矩阵,假设句子有 n 个词,vector的维数为 k ,那么这个矩阵就是 n × k 的(在CNN中可以看作一副高度为n、宽度为k的图像)。

这个矩阵的类型可以是静态的(static),也可以是动态的(non static)。静态就是word vector是固定不变的,而动态则是在模型训练过程中,word vector也当做是可优化的参数,通常把反向误差传播导致word vector中值发生变化的这一过程称为Fine tune。(这里如果word vector如果是随机初始化的,不仅训练得到了CNN分类模型,还得到了word2vec这个副产品了,如果已经有训练的word vector,那么其实是一个迁移学习的过程)

对于未登录词的vector,可以用0或者随机小的正数来填充。

2、 第一层卷积层:

输入层通过卷积操作得到若干个Feature Map,卷积窗口的大小为 h ×k ,其中 h 表示纵向词语的个数,而 k 表示word vector的维数。通过这样一个大型的卷积窗口,将得到若干个列数为1的Feature Map。(熟悉NLP中N-GRAM模型的读者应该懂得这个意思)。

3、 池化层:

接下来的池化层,文中用了一种称为Max-over-timePooling的方法。这种方法就是简单地从之前一维的Feature Map中提出最大的值,文中解释最大值代表着最重要的信号。可以看出,这种Pooling方式可以解决可变长度的句子输入问题(因为不管Feature Map中有多少个值,只需要提取其中的最大值)。最终池化层的输出为各个Feature Map的最大值们,即一个一维的向量。

4、 全连接+softmax层:

池化层的一维向量的输出通过全连接的方式,连接一个Softmax层,Softmax层可根据任务的需要设置(通常反映着最终类别上的概率分布)。

训练方案: 在倒数第二层的全连接部分上使用Dropout技术,Dropout是指在模型训练时随机让网络某些隐含层节点的权重不工作,不工作的那些节点可以暂时认为不是网络结构的一部分,但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了,它是防止模型过拟合的一种常用的trikc。同时对全连接层上的权值参数给予L2正则化的限制。这样做的好处是防止隐藏层单元自适应(或者对称),从而减轻过拟合的程度。

在样本处理上使用minibatch方式来降低一次模型拟合计算量,使用shufflebatch的方式来降低各批次输入样本之间的相关性(在机器学习中,如果训练数据之间相关性很大,可能会让结果很差、泛化能力得不到训练、这时通常需要将训练数据打散,称之为shufflebatch)。

论文作者也公布了自己的实现程序(下载戳这里),同时有一位同行对上述论文给出了解读并基于上述程序做了对比实验(论文解读戳这里)。本人上面的分析也是基于原始论文和解读,算是锦上添花吧。

参考上述论文和源程序,本人对其在中文短文本分类问题上进行了实验。

实验要求:

Python环境

  安装结巴分词的python版本

安装numpy、pandas等一系列科学计算相关库

安装tensorflow。 语料库:使用的是搜狗语料库,搜索SogouC.reduced可找到下载连接。

使用方法: 1、使用processdatacn.py对文本进行分词 2、使用processdata.py对分词后的文本做进一步的处理:打lable、统计词频等过程,最终生成一个mr.p的序列化文件 3、使用sentenceclassfierwithtensorflow.py训练CNN模型

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.