Awesome-Super-Resolution

by ChaofWang

Collect super-resolution related papers, data, repositories

611 Stars 119 Forks Last release: Not found 119 Commits 0 Releases

Available items

No Items, yet!

The developer of this repository has not created any items for sale yet. Need a bug fixed? Help with integration? A different license? Create a request here:

Quick navigation

Awesome-Super-Resolution(in progress)

Collect some super-resolution related papers, data and repositories.

repositories

Awesome paper list:

Single-Image-Super-Resolution

Super-Resolution.Benckmark

Video-Super-Resolution

VideoSuperResolution

Awesome Super-Resolution

Awesome-LF-Image-SR

Awesome-Stereo-Image-SR

AI-video-enhance

Awesome repos:

| repo | Framework | | :----------------------------------------------------------: | :--------: | | EDSR-PyTorch | PyTorch | | Image-Super-Resolution | Keras | | image-super-resolution | Keras | | Super-Resolution-Zoo | MxNet | | super-resolution | Keras | | neural-enhance | Theano | | srez | Tensorflow | | waifu2x | Torch | | BasicSR | PyTorch | | super-resolution | PyTorch | | VideoSuperResolution | Tensorflow | | video-super-resolution | Pytorch | |MMSR | PyTorch |

Datasets

Note this table is referenced from here.

| Name | Usage | Link | Comments | | :----------: | :--------: | :----------------------------------------------------------: | :----------------------------------------------------: | | Set5 | Test | download | jbhuang0604 | | SET14 | Test | download | jbhuang0604 | | BSD100 | Test | download | jbhuang0604 | | Urban100 | Test | download | jbhuang0604 | | Manga109 | Test | website | | | SunHay80 | Test | download | jbhuang0604 | | BSD300 | Train/Val | download | | | BSD500 | Train/Val | download | | | 91-Image | Train | download | Yang | | DIV2K2017 | Train/Val | website | NTIRE2017 | | Flickr2K | Train | download | | | Real SR | Train/Val | website | NTIRE2019 | | Waterloo | Train | website | | | VID4 | Test | download | 4 videos | | MCL-V | Train | website | 12 videos | | GOPRO | Train/Val | website | 33 videos, deblur | | CelebA | Train | website | Human faces | | Sintel | Train/Val | website | Optical flow | | FlyingChairs | Train | website | Optical flow | | Vimeo-90k | Train/Test | website | 90k HQ videos | | SR-RAW | Train/Test | website | raw sensor image dataset | | W2S | Train/Test | arxiv | A Joint Denoising and Super-Resolution Dataset | | PIPAL | Test | ECCV 2020 | Perceptual Image Quality Assessment dataset |

Dataset collections

Benckmark and DIV2K: Set5, Set14, B100, Urban100, Manga109, DIV2K2017 include bicubic downsamples with x2,3,4,8

SRtestingdatasets: Test: Set5, Set14, B100, Urban100, Manga109, Historical; Train: T91,General100, BSDS200

paper

Non-DL based approach

SCSR: TIP2010, Jianchao Yang et al.paper, code

ANR: ICCV2013, Radu Timofte et al. paper, code

A+: ACCV 2014, Radu Timofte et al. paper, code

IA: CVPR2016, Radu Timofte et al. paper

SelfExSR: CVPR2015, Jia-Bin Huang et al. paper, code

NBSRF: ICCV2015, Jordi Salvador et al. paper

RFL: ICCV2015, Samuel Schulter et al paper, code

DL based approach

Note this table is referenced from here

2014-2016

| Model | Published | Code | Keywords | | ---------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | | SRCNN | ECCV14 | Keras | Kaiming | | RAISR | arXiv | - | Google, Pixel 3 | | ESPCN | CVPR16 | Keras | Real time/SISR/VideoSR | | VDSR | CVPR16 | Matlab | Deep, Residual | | DRCN | CVPR16 | Matlab | Recurrent |

2017

| Model | Published | Code | Keywords | | ---------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | | DRRN | CVPR17 | Caffe, PyTorch | Recurrent | | LapSRN | CVPR17 | Matlab | Huber loss | | IRCNN | CVPR17 | Matlab | | | EDSR | CVPR17 | PyTorch | NTIRE17 Champion | | BTSRN | CVPR17 | - | NTIRE17 | | SelNet | CVPR17 | - | NTIRE17 | | TLSR | CVPR17 | - | NTIRE17 | | SRGAN | CVPR17 | Tensorflow | 1st proposed GAN | | VESPCN | CVPR17 | - | VideoSR | | MemNet | ICCV17 | Caffe | | | SRDenseNet | ICCV17 | -, PyTorch | Dense | | SPMC | ICCV17 | Tensorflow | VideoSR | | EnhanceNet | ICCV17 | TensorFlow | Perceptual Loss | | PRSR | ICCV17 | TensorFlow | an extension of PixelCNN | | AffGAN | ICLR17 | - | |

2018

| Model | Published | Code | Keywords | | ---------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | | MS-LapSRN | TPAMI18 | Matlab | Fast LapSRN | | DCSCN | arXiv | Tensorflow | | | IDN | CVPR18 | Caffe | Fast | | DSRN | CVPR18 | TensorFlow | Dual state,Recurrent | | RDN | CVPR18 | Torch | Deep, BI-BD-DN | | SRMD | CVPR18 | Matlab | Denoise/Deblur/SR | | xUnit | CVPR18 | PyTorch | Spatial Activation Function | | DBPN | CVPR18 | PyTorch | NTIRE18 Champion | | WDSR | CVPR18 | PyTorchTensorFlow | NTIRE18 Champion | | ProSRN | CVPR18 | PyTorch | NTIRE18 | | ZSSR | CVPR18 | Tensorflow | Zero-shot | | FRVSR | CVPR18 | PDF | VideoSR | | DUF | CVPR18 | Tensorflow | VideoSR | | TDAN | arXiv | - | VideoSR,Deformable Align | | SFTGAN | CVPR18 | PyTorch | | | CARN | ECCV18 | PyTorch | Lightweight | | RCAN | ECCV18 | PyTorch | Deep, BI-BD-DN | | MSRN | ECCV18 | PyTorch | | | SRFeat | ECCV18 | Tensorflow | GAN | | TSRN | ECCV18 | Pytorch | | | ESRGAN | ECCV18 | PyTorch | PRIM18 region 3 Champion | | EPSR | ECCV18 | PyTorch | PRIM18 region 1 Champion | | PESR | ECCV18 | PyTorch | ECCV18 workshop | | FEQE | ECCV18 | Tensorflow | Fast | | NLRN | NIPS18 | Tensorflow | Non-local, Recurrent | | SRCliqueNet | NIPS18 | - | Wavelet | | CBDNet | arXiv | Matlab | Blind-denoise | | TecoGAN | arXiv | Tensorflow | VideoSR GAN |

2019

| Model | Published | Code | Keywords | | ---------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | | RBPN | CVPR19 | PyTorch | VideoSR | | SRFBN | CVPR19 | PyTorch | Feedback | | AdaFM | CVPR19 | PyTorch | Adaptive Feature Modification Layers | | MoreMNAS | arXiv | - | Lightweight,NAS | | FALSR | arXiv | TensorFlow | Lightweight,NAS | | Meta-SR | CVPR19 | PyTorch | Arbitrary Magnification | | AWSRN | arXiv | PyTorch | Lightweight | | OISR | CVPR19 | PyTorch | ODE-inspired Network | | DPSR | CVPR19 | PyTorch | | | DNI | CVPR19 | PyTorch | | | MAANet | arXiv | | Multi-view Aware Attention | | RNAN | ICLR19 | PyTorch | Residual Non-local Attention | | FSTRN | CVPR19 | - | VideoSR, fast spatio-temporal residual block | | MsDNN | arXiv | TensorFlow | NTIRE19 real SR 21th place | | SAN | CVPR19 | Pytorch | Second-order Attention,cvpr19 oral | | EDVR | CVPRW19 | Pytorch | Video, NTIRE19 video restoration and enhancement champions | | Ensemble for VSR | CVPRW19 | - | VideoSR, NTIRE19 video SR 2nd place | | TENet | arXiv | Pytorch | a Joint Solution for Demosaicking, Denoising and Super-Resolution | | MCAN | arXiv | Pytorch | Matrix-in-matrix CAN, Lightweight | | IKC&SFTMD | CVPR19 | - | Blind Super-Resolution | | SRNTT | CVPR19 | TensorFlow | Neural Texture Transfer | | RawSR | CVPR19 | TensorFlow | Real Scene Super-Resolution, Raw Images | | resLF | CVPR19 | | Light field | | CameraSR | CVPR19 | | realistic image SR | | ORDSR | TIP | model | DCT domain SR | | U-Net | CVPRW19 | | NTIRE19 real SR 2nd place, U-Net,MixUp,Synthesis | | DRLN | arxiv | | Densely Residual Laplacian Super-Resolution | | EDRN | CVPRW19 | Pytorch | NTIRE19 real SR 9th places | | FC2N | arXiv | | Fully Channel-Concatenated | | GMFN | BMVC2019 | Pytorch | Gated Multiple Feedback | | CNN&TV-TV Minimization | BMVC2019 | | TV-TV Minimization | | HRAN | arXiv | | Hybrid Residual Attention Network | | PPON | arXiv | code | Progressive Perception-Oriented Network | | SROBB | ICCV19 | | Targeted Perceptual Loss | | RankSRGAN | ICCV19 | PyTorch | oral, rank-content loss | | edge-informed | ICCVW19 | PyTorch | Edge-Informed Single Image Super-Resolution | | s-LWSR | arxiv | | Lightweight | | DNLN | arxiv | | Video SR Deformable Non-local Network | | MGAN | arxiv | | Multi-grained Attention Networks | | IMDN | ACM MM 2019 | PyTorch | AIM19 Champion | | ESRN | arxiv | | NAS | | PFNL | ICCV19 | Tensorflow | VideoSR oral,Non-Local Spatio-Temporal Correlations | | EBRN | ICCV19 | Tensorflow | Embedded Block Residual Network | | Deep SR-ITM | ICCV19 | matlab | SDR to HDR, 4K SR | | feature SR | ICCV19 | | Super-Resolution for Small Object Detection | | STFAN | ICCV19 | PyTorch | Video Deblurring | | KMSR | ICCV19 | PyTorch | GAN for blur-kernel estimation | | CFSNet | ICCV19 | PyTorch | Controllable Feature | | FSRnet | ICCV19 | | Multi-bin Trainable Linear Units | | SAM+VAM | ICCVW19 | | | | SinGAN | ICCV19 | PyTorch | bestpaper, train from single image |

2020

| Model | Published | Code | Keywords | | ---------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | | FISR | AAAI 2020 | TensorFlow | Video joint VFI-SR method,Multi-scale Temporal Loss | | ADCSR | arxiv | | | | SCN | AAAI 2020 | | Scale-wise Convolution | | LSRGAN | arxiv | | Latent Space Regularization for srgan | | Zooming Slow-Mo | CVPR 2020 | PyTorch | joint VFI and SR,one-stage, deformable ConvLSTM | | MZSR | CVPR 2020 | | Meta-Transfer Learning, Zero-Shot | | VESR-Net | arxiv | | Youku Video Enhancement and Super-Resolution Challenge Champion | | blindvsr | arxiv | PyTorch | Motion blur estimation | | HNAS-SR | arxiv | PyTorch | Hierarchical Neural Architecture Search, Lightweight | | DRN | CVPR 2020 | PyTorch | Dual Regression, SISR STOA | | SFM | arxiv | PyTorch | Stochastic Frequency Masking, Improve method | | EventSR | CVPR 2020 | | split three phases | | USRNet | CVPR 2020 | PyTorch | | | PULSE | CVPR 2020 | | Self-Supervised | | SPSR | CVPR 2020 | Code | Gradient Guidance, GAN | | DASR | arxiv | Code | Real-World Image Super-Resolution, Unsupervised SuperResolution, Domain Adaptation. | | STVUN | arxiv | PyTorch | Video Super-Resolution, Video Frame Interpolation, Joint space-time upsampling | | AdaDSR | arxiv | PyTorch | Adaptive Inference | | Scale-Arbitrary SR | arxiv | Code | Scale-Arbitrary Super-Resolution, Knowledge Transfer | | DeepSEE | arxiv | Code | Extreme super-resolution,32× magnification | | CutBlur | CVPR 2020 | PyTorch | SR Data Augmentation | | UDVD | CVPR 2020 | | Unified Dynamic Convolutional,SISR and denoise | | DIN | IJCAI-PRICAI 2020 | | SISR,asymmetric co-attention | | PANet | arxiv |PyTorch | Pyramid Attention | | SRResCGAN | arxiv |PyTorch | | | ISRN | arxiv | | iterative optimization, feature normalization. | | RFB-ESRGAN | CVPR 2020 | | NTIRE 2020 Perceptual Extreme Super-Resolution Challenge winner | | PHYSICSSR | AAAI 2020 | PyTorch | | | CSNLN | CVPR 2020 | PyTorch | Cross-Scale Non-Local Attention,Exhaustive Self-Exemplars Mining, Similar to PANet | | TTSR | CVPR 2020 | PyTorch | Texture Transformer | | NSR | arxiv | PyTorch | Neural Sparse Representation | | RFANet | CVPR 2020 | | state-of-the-art SISR | | Correction filter | CVPR 2020 | | Enhance SISR model generalization | | Unpaired SR | CVPR 2020 | |Unpaired Image Super-Resolution | | STARnet | CVPR 2020 | |Space-Time-Aware multi-Resolution | | SSSR | CVPR 2020 | code |SISR for Semantic Segmentation and Human pose estimation | | VSRTGA | CVPR 2020 | code | Temporal Group Attention, Fast Spatial Alignment | | SSEN | CVPR 2020 | | Similarity-Aware Deformable Convolution | | SMSR | arxiv | | Sparse Masks, Efficient SISR | LF-InterNet | ECCV 2020 | PyTorch | Spatial-Angular Interaction, Light Field Image SR | | Invertible-Image-Rescaling | ECCV 2020 | Code | ECCV oral | | IGNN | arxiv | Code | GNN, SISR | | MIRNet | ECCV 2020 | PyTorch | multi-scale residual block | | SFM | ECCV 2020 | PyTorch | stochastic frequency mask | | TCSVT | arxiv | TensorFlow | LightWeight modules | | PISR | ECCV 2020 | PyTorch | FSRCNN,distillation framework, HR privileged information | | MuCAN | ECCV 2020 | | VideoSR, Temporal Multi-Correspondence Aggregation | | DGP | ECCV 2020 |PyTorch | ECCV oral, GAN, Image Restoration and Manipulation, | | RSDN| ECCV 2020 |Code | VideoSR, Recurrent Neural Network, TwoStream Block| | CDC| ECCV 2020 |PyTorch | Diverse Real-world SR dataset, Component Divide-and-Conquer model, GradientWeighted loss| | MS3-Conv| arxiv | | Multi-Scale cross-Scale Share-weights convolution | | OverNet| arxiv | | Lightweight, Overscaling Module, multi-scale loss, Arbitrary Scale Factors | | RRN| BMVC20 | code | VideoSR, Recurrent Residual Network, temporal modeling method | | NAS-DIP| ECCV 2020 | | NAS| | SRFlow| ECCV 2020 |code | Spotlight, Normalizing Flow| | LatticeNet| ECCV 2020 | |Lattice Block, LatticeNet, Lightweight, Attention| | BSRN| ECCV 2020 | |Model Quantization, Binary Neural Network, Bit-Accumulation Mechanism| | VarSR| ECCV 2020 | |Variational Super-Resolution, very low resolution | | HAN| ECCV 2020 | |SISR, holistic attention network, channel-spatial attention module | | DeepTemporalSR| ECCV 2020 | |Temporal Super-Resolution | | DGDML-SR| ECCV 2020 | |Zero-Shot, Depth Guided Internal Degradation Learning | |MLSR| ECCV 2020 | |Meta-learning, Patch recurrence | |PlugNet| ECCV 2020 | |Scene Text Recognition, Feature Squeeze Module | |TextZoom| ECCV 2020 |code |Scene Text Recognition | |TPSR| ECCV 2020 | |NAS,Tiny Perceptual SR | |CUCaNet| ECCV 2020 | PyTorch |Coupled unmixing, cross-attention,hyperspectral super-resolution, multispectral, unsupervised | |MAFFSRN| ECCVW 2020 | |Multi-Attentive Feature Fusion, Ultra Lightweight | |SRResCycGAN| ECCVW 2020 | PyTorch |RealSR, CycGAN | |A-CubeNet| arxiv | |SISR, lightweight| |MoG-DUN| arxiv | |SISR | |Understanding Deformable Alignment| arxiv | | VideoSR, EDVR, offset-fidelity loss | |AdderSR| arxiv | | SISR, adder neural networks, Energy Efficient | |RFDN| arxiv | | SISR, Lightweight, IMDN, AIM20 WINNER | |Tarsier| arxiv | | improve NESRGAN+,injected noise, Diagonal CMA optimize | |DeFiAN| arxiv | PyTorch |SISR, detail-fidelity attention, Hessian filtering |

Super Resolution workshop papers

NTIRE17 papers

NTIRE18 papers

PIRM18 Web

NTIRE19 papers

AIM19 papers

NTIRE20 papers

AIM20 Web

Super Resolution survey

[1] Wenming Yang, Xuechen Zhang, Yapeng Tian, Wei Wang, Jing-Hao Xue. Deep Learning for Single Image Super-Resolution: A Brief Review. arxiv, 2018. paper

[2]Saeed Anwar, Salman Khan, Nick Barnes. A Deep Journey into Super-resolution: A survey. arxiv, 2019.paper

[3]Wang, Z., Chen, J., & Hoi, S. C. (2019). Deep learning for image super-resolution: A survey. arXiv preprint arXiv:1902.06068.paper

[4]Hongying Liu and Zhubo Ruan and Peng Zhao and Fanhua Shang and Linlin Yang and Yuanyuan Liu. Video Super Resolution Based on Deep Learning: A comprehensive survey. arXiv preprint arXiv:2007.12928.paper

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.