rnn pytorch Python lstm
Need help with pytorch-image-comp-rnn?
Click the “chat” button below for chat support from the developer who created it, or find similar developers for support.
1zb

Description

PyTorch implementation of Full Resolution Image Compression with Recurrent Neural Networks

137 Stars 40 Forks 23 Commits 11 Opened issues

Services available

Need anything else?

Full Resolution Image Compression with Recurrent Neural Networks

https://arxiv.org/abs/1608.05148v2

Requirements

  • PyTorch 0.2.0

Train

python train.py -f /path/to/your/images/folder/like/mscoco

Encode and Decode

Encode

python encoder.py --model checkpoint/encoder_epoch_00000005.pth --input /path/to/your/example.png --cuda --output ex --iterations 16

This will output binary codes saved in

.npz
format.

Decode

python decoder.py --model checkpoint/encoder_epoch_00000005.pth --input /path/to/your/example.npz --cuda --output /path/to/output/folder

This will output images of different quality levels.

Test

Get Kodak dataset

bash test/get_kodak.sh

Encode and decode with RNN model

bash test/enc_dec.sh

Encode and decode with JPEG (use
convert
from ImageMagick)

bash test/jpeg.sh

Calculate SSIM

bash test/calc_ssim.sh

Draw rate-distortion curve

python test/draw_rd.py

Result

LSTM (Additive Reconstruction), before entropy coding

Rate-distortion

Rate-distortion

kodim10.png

Original Image

Original Image

Below Left: LSTM, SSIM=0.865, bpp=0.125

Below Right: JPEG, SSIM=0.827, bpp=0.133

bpp-0.125-0.133-ssim-0.865-0.827

Below Left: LSTM, SSIM=0.937, bpp=0.250

Below Right: JPEG, SSIM=0.918, bpp=0.249

bpp-0.250-0.249-ssim-0.937-0.918

Below Left: LSTM, SSIM=0.963, bpp=0.375

Below Right: JPEG, SSIM=0.951, bpp=0.381

bpp-0.375-0.381-ssim-0.963-0.951

What's inside

  • train.py
    : Main program for training.
  • encoder.py
    and
    decoder.py
    : Encoder and decoder.
  • dataset.py
    : Utils for reading images.
  • metric.py
    : Functions for Calculatnig MS-SSIM and PSNR.
  • network.py
    : Modules of encoder and decoder.
  • modules/conv_rnn.py
    : ConvLSTM module.
  • functions/sign.py
    : Forward and backward for binary quantization.

Official Repo

https://github.com/tensorflow/models/tree/master/compression

We use cookies. If you continue to browse the site, you agree to the use of cookies. For more information on our use of cookies please see our Privacy Policy.